
Copyright © 2006 by ASME 1

INTRODUCTION
 Optimization algorithms are often used to solve biomechanical
system identification or movement prediction problems employing
complicated three-dimensional (3D) musculoskeletal models [1].
When gradient-based methods are used to solve large-scale problems
involving hundreds of design variables, the computational cost of
performing repeated simulations to calculate finite difference gradients
can be extremely high. In addition, as 3D movement model
complexity increases, there is a considerable increase in the
computational expense of repeated simulations. Frequently, in spite of
advances in processor performance, optimizations remain limited by
computation time.
 Both speed and robustness of gradient-based optimizations are
dramatically improved by using an analytical Jacobian matrix (all first-
order derivatives of dependent objective function variables with
respect to independent design variables) rather than relying on finite
difference approximations. Granted the objective function may involve
thousands or perhaps millions of lines of computer code, the task of
computing analytical derivatives by hand or even symbolically may
prove impractical. For more than eight years, the Network Enabled
Optimization Server (NEOS) at Argonne National Laboratory has
been using Automatic Differentiation (AD), also called Algorithmic
Differentiation, to compute Jacobians of remotely supplied user code
[2]. AD is a technique for computing derivatives of arbitrarily complex
computer programs by mechanical application of the chain rule of
differential calculus. AD exploits the fact every computer program, no
matter how complicated, executes a sequence of elementary arithmetic
operations. By applying the chain rule repeatedly to these operations,
derivatives can be computed automatically and accurately to working
precision.

 In this paper, we evaluate the benefits of using AD methods to
calculate analytical Jacobians for biomechanical optimization
problems. We performed the evaluation by applying a freely-available
AD package, Automatic Differentiation by OverLoading in C++
(ADOL-C) [3], to two biomechanical optimization problems. The first
is a system identification problem for a 3D kinematic ankle joint
model involving 252 design variables and 1800 objective function
elements. The second is a movement prediction problem for a 3D full-
body gait model involving 660 design variables and 4100 objective
function elements. Both problems are solved using a nonlinear least
squares optimization algorithm.

METHODS
 Experimental kinematic and kinetic data were collected from a
single subject using a video-based motion analysis system (Motion
Analysis Corporation, Santa Rosa, CA) and two force plates (AMTI,
Watertown, MA). Institutional review board approval and informed
consent were obtained prior to the experiments.
 The ankle joint problem was first solved without AD using the
Matlab (The Mathworks, Inc., Natick, MA) nonlinear least squares
optimizer [4]. The optimization approach simultaneously adjusted
joint parameter values and model motion to minimize errors between
model and experimental marker locations. The ankle joint model
possessed 12 joint parameters and 12 degrees-of-freedom. Each of the
12 generalized coordinate curves was parameterized using 20 B-spline
nodal points (240 total). Altogether, there were 252 design variables.
The problem contained 18 error quantities for each of the 100 time
frames of data. The Jacobian matrix consisted of 1800 rows and 252
columns estimated by finite difference approximations.
 The movement prediction problem was first solved without AD
using the same Matlab nonlinear least squares optimizer [5]. The

Proceedings of BIO2006
2006 Summer Bioengineering Conference

June 21-25, Amelia Island Plantation, Amelia Island, Florida, USA

BIO2006-XXXXX

BENIFITS OF AUTOMATIC DIFFERENTIATION FOR BIOMECHANICAL OPTIMIZATIONS

Jeffrey A. Reinbolt (1) and Benjamin J. Fregly (1,2)

(1) Department of Mechanical & Aerospace Engineering
University of Florida

Gainesville, FL

(2) Department of Biomedical Engineering
University of Florida

Gainesville, FL

Copyright © 2006 by ASME 2

optimization approach simultaneously adjusted model motion and
ground reactions to minimize knee adduction torque and 5 categories
of tracking errors (foot path, center of pressure, trunk orientation, joint
torque, and fictitious ground-to-pelvis residual reactions) between
model and experiment. The movement prediction model possessed 27
degrees-of-freedom (21 adjusted by B-spline curves and 6 prescribed
for arm motion) and 12 ground reactions. Each adjustable generalized
coordinate and reaction curve was parameterized using 20 B-spline
nodal points (660 total design variables). The problem contained 41
error quantities for each of the 100 time frames of data. The Jacobian
matrix consisted of 4100 rows and 660 columns estimated by finite
difference approximations.
 ADOL-C was incorporated into each objective function to
compute an analytical Jacobian matrix. This package was chosen
because the objective functions were comprised of Matlab mex-files,
which are dynamic link libraries of compiled C or C++ code. ADOL-C
was implemented into the C++ source code by the following steps:

1. Mark the beginning and end of active section (portion computing

dependent variables from independent variables) using built-in
functions trace_on and trace_off, respectively.

2. Select a set of active variables (those considered differentiable at
some point in the program execution) and change type from
double to built-in type adouble.

3. Define a set of independent variables using the output stream
operator (<<=).

4. Define a set of dependent variables using the input stream
operator (>>=).

5. Call the built-in driver function jacobian to compute first-
order derivatives using reverse mode AD.

6. Compile the code including built-in header file adolc.h and
linking with built-in library file adolc.lib.

All optimizations with and without AD were performed on a 1.73 GHz
Pentium M laptop with 2.00 GB of RAM. The computation time
performance was compared.

RESULTS
 For each problem, performance comparisons of optimizing with
and without AD are summarized in Table 1 and Table 2. The use of
AD increased the computation time per objective function evaluation.
However, the number of function evaluations necessary per
optimization iteration was less with AD. For the system identification
problem, the computation time required per optimization iteration with
AD was approximately 20.5% (or reduced by a factor of 4.88) of the
time required without AD. For the movement prediction problem, the
computation time required per optimization iteration with AD was
approximately 51.1% (or reduced by a factor of 1.96) of the time
required without AD.

DISCUSSION
 The main motivation for investigating the use of AD for
biomechanical optimizations was to improve both speed and
robustness of solutions. Speed improvement for the movement
prediction optimization in particular was not as significant as
anticipated. Further investigation is necessary to determine the effect
of AD characteristics such as forward mode vs. reverse mode and
source code transformation vs. operator overloading on computational
speed. Whichever AD method is used, having analytical derivatives
eliminates inaccurate search directions and sensitivity to design
variable scaling which can plague optimizations that use finite
difference gradients. If central (more accurate) instead of forward

differencing was used in the movement prediction optimization
without AD, the performance improvement would have been a factor
of four instead of two.
 Special dynamics formulations can also be utilized to compute
analytical derivatives concurrently while evaluating the equations of
motion, and the trade-offs between those approaches and AD require
further investigation. While AD-based analytical derivatives may be
less efficient computationally than those derived using special
dynamics formulations, AD provides effortless updating of the
derivative calculations should the biomechanical model used in the
optimization be changed.
 For large-scale problems, AD provides a relatively simple means
for computing analytical derivatives to improve the speed and
robustness of biomechanical optimizations.

ACKNOWLEDGMENTS
 This study was funded by Whitaker Foundation and NIH National
Library of Medicine (R03 LM07332-01) grants to B.J.F.

REFERENCES
1. Pandy, M.G., 2001, “Computer Modeling and Simulation of

Human Movement,” Annual Reviews in Biomedical Engineering,
Vol. 3, pp. 245-273.

2. Griewank, A., 2000, Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation, Society for Industrial
and Applied Mathematics, Philadelphia, PA.

3. Griewank, A., Juedes, D., and Utke, J., 1996, “ADOL-C: a
Package for the Automatic Differentiation of Algorithms Written
in C/C++,” Association for Computing Machinery Transactions
on Mathematical Software, Vol. 22, pp. 131-167.

4. Reinbolt, J.A. and Fregly, B.J., 2005, “Creation of Patient-
Specific Dynamic Models from Three-Dimensional Movement
Data Using Optimization,” Proceedings, 10th International
Symposium on Computer Simulation in Biomechanics,
Cleveland, OH.

5. Fregly, B.J., Rooney, K.L., and Reinbolt, J.A., 2005, “Predicted
Gait Modifications to Reduce the Peak Knee Adduction Torque,”
Proceedings, 20th Congress of the International Society of
Biomechanics, Cleveland, OH, pp. 283.

Table 1. Performance results for system identification
problem for a 3D kinematic ankle joint model involving 252
design variables and 1800 objective function elements.

Performance Criteria Without AD With AD

Time per Function Evaluation (s) 0.0189 0.978
Number of Function Evaluations

per Optimization Iteration 252 1

Time per Optimization Iteration (s) 4.77 0.978

Table 2. Performance results for movement prediction
problem for a 3D full-body gait model involving 660 design
variables and 4100 objective function elements.

Performance Criteria Without AD With AD

Time per Function Evaluation (s) 0.217 73.1
Number of Function Evaluations

per Optimization Iteration 660 1

Time per Optimization Iteration (s) 143 73.1

