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INTRODUCTION 
 Optimization algorithms are often used to solve biomechanical 
system identification or movement prediction problems employing 
complicated three-dimensional (3D) musculoskeletal models [1]. 
When gradient-based methods are used to solve large-scale problems 
involving hundreds of design variables, the computational cost of 
performing repeated simulations to calculate finite difference gradients 
can be extremely high. In addition, as 3D movement model 
complexity increases, there is a considerable increase in the 
computational expense of repeated simulations. Frequently, in spite of 
advances in processor performance, optimizations remain limited by 
computation time. 
 Both speed and robustness of gradient-based optimizations are 
dramatically improved by using an analytical Jacobian matrix (all first-
order derivatives of dependent objective function variables with 
respect to independent design variables) rather than relying on finite 
difference approximations. Granted the objective function may involve 
thousands or perhaps millions of lines of computer code, the task of 
computing analytical derivatives by hand or even symbolically may 
prove impractical. For more than eight years, the Network Enabled 
Optimization Server (NEOS) at Argonne National Laboratory has 
been using Automatic Differentiation (AD), also called Algorithmic 
Differentiation, to compute Jacobians of remotely supplied user code 
[2]. AD is a technique for computing derivatives of arbitrarily complex 
computer programs by mechanical application of the chain rule of 
differential calculus. AD exploits the fact every computer program, no 
matter how complicated, executes a sequence of elementary arithmetic 
operations. By applying the chain rule repeatedly to these operations, 
derivatives can be computed automatically and accurately to working 
precision. 

 In this paper, we evaluate the benefits of using AD methods to 
calculate analytical Jacobians for biomechanical optimization 
problems. We performed the evaluation by applying a freely-available 
AD package, Automatic Differentiation by OverLoading in C++ 
(ADOL-C) [3], to two biomechanical optimization problems. The first 
is a system identification problem for a 3D kinematic ankle joint 
model involving 252 design variables and 1800 objective function 
elements. The second is a movement prediction problem for a 3D full-
body gait model involving 660 design variables and 4100 objective 
function elements. Both problems are solved using a nonlinear least 
squares optimization algorithm. 
 
METHODS 
 Experimental kinematic and kinetic data were collected from a 
single subject using a video-based motion analysis system (Motion 
Analysis Corporation, Santa Rosa, CA) and two force plates (AMTI, 
Watertown, MA). Institutional review board approval and informed 
consent were obtained prior to the experiments. 
 The ankle joint problem was first solved without AD using the 
Matlab (The Mathworks, Inc., Natick, MA) nonlinear least squares 
optimizer [4]. The optimization approach simultaneously adjusted 
joint parameter values and model motion to minimize errors between 
model and experimental marker locations. The ankle joint model 
possessed 12 joint parameters and 12 degrees-of-freedom. Each of the 
12 generalized coordinate curves was parameterized using 20 B-spline 
nodal points (240 total). Altogether, there were 252 design variables. 
The problem contained 18 error quantities for each of the 100 time 
frames of data. The Jacobian matrix consisted of 1800 rows and 252 
columns estimated by finite difference approximations. 
 The movement prediction problem was first solved without AD 
using the same Matlab nonlinear least squares optimizer [5]. The 
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optimization approach simultaneously adjusted model motion and 
ground reactions to minimize knee adduction torque and 5 categories 
of tracking errors (foot path, center of pressure, trunk orientation, joint 
torque, and fictitious ground-to-pelvis residual reactions) between 
model and experiment. The movement prediction model possessed 27 
degrees-of-freedom (21 adjusted by B-spline curves and 6 prescribed 
for arm motion) and 12 ground reactions. Each adjustable generalized 
coordinate and reaction curve was parameterized using 20 B-spline 
nodal points (660 total design variables). The problem contained 41 
error quantities for each of the 100 time frames of data. The Jacobian 
matrix consisted of 4100 rows and 660 columns estimated by finite 
difference approximations. 
 ADOL-C was incorporated into each objective function to 
compute an analytical Jacobian matrix. This package was chosen 
because the objective functions were comprised of Matlab mex-files, 
which are dynamic link libraries of compiled C or C++ code. ADOL-C 
was implemented into the C++ source code by the following steps: 
 
1. Mark the beginning and end of active section (portion computing 

dependent variables from independent variables) using built-in 
functions trace_on and trace_off, respectively. 

2. Select a set of active variables (those considered differentiable at 
some point in the program execution) and change type from 
double to built-in type adouble. 

3. Define a set of independent variables using the output stream 
operator (<<=). 

4. Define a set of dependent variables using the input stream 
operator (>>=). 

5. Call the built-in driver function jacobian to compute first-
order derivatives using reverse mode AD. 

6. Compile the code including built-in header file adolc.h and 
linking with built-in library file adolc.lib. 

 
All optimizations with and without AD were performed on a 1.73 GHz 
Pentium M laptop with 2.00 GB of RAM. The computation time 
performance was compared. 
 
RESULTS 
 For each problem, performance comparisons of optimizing with 
and without AD are summarized in Table 1 and Table 2. The use of 
AD increased the computation time per objective function evaluation. 
However, the number of function evaluations necessary per 
optimization iteration was less with AD. For the system identification 
problem, the computation time required per optimization iteration with 
AD was approximately 20.5% (or reduced by a factor of 4.88) of the 
time required without AD. For the movement prediction problem, the 
computation time required per optimization iteration with AD was 
approximately 51.1% (or reduced by a factor of 1.96) of the time 
required without AD. 
 
DISCUSSION 
 The main motivation for investigating the use of AD for 
biomechanical optimizations was to improve both speed and 
robustness of solutions. Speed improvement for the movement 
prediction optimization in particular was not as significant as 
anticipated. Further investigation is necessary to determine the effect 
of AD characteristics such as forward mode vs. reverse mode and 
source code transformation vs. operator overloading on computational 
speed. Whichever AD method is used, having analytical derivatives 
eliminates inaccurate search directions and sensitivity to design 
variable scaling which can plague optimizations that use finite 
difference gradients. If central (more accurate) instead of forward 

differencing was used in the movement prediction optimization 
without AD, the performance improvement would have been a factor 
of four instead of two. 
 Special dynamics formulations can also be utilized to compute 
analytical derivatives concurrently while evaluating the equations of 
motion, and the trade-offs between those approaches and AD require 
further investigation. While AD-based analytical derivatives may be 
less efficient computationally than those derived using special 
dynamics formulations, AD provides effortless updating of the 
derivative calculations should the biomechanical model used in the 
optimization be changed. 
 For large-scale problems, AD provides a relatively simple means 
for computing analytical derivatives to improve the speed and 
robustness of biomechanical optimizations. 
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Table 1. Performance results for system identification 
problem for a 3D kinematic ankle joint model involving 252 
design variables and 1800 objective function elements. 

Performance Criteria Without AD With AD 

Time per Function Evaluation (s) 0.0189 0.978 
Number of Function Evaluations 

per Optimization Iteration 252 1 

Time per Optimization Iteration (s) 4.77 0.978 
 
Table 2. Performance results for movement prediction 
problem for a 3D full-body gait model involving 660 design 
variables and 4100 objective function elements. 

Performance Criteria Without AD With AD 

Time per Function Evaluation (s) 0.217 73.1 
Number of Function Evaluations 

per Optimization Iteration 660 1 

Time per Optimization Iteration (s) 143 73.1 


