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Multiscale Modeling
in Computational
Biomechanics

B
iomechanics is broadly defined as the scientific disci-
pline that investigates the effects of forces acting on
and within biological structures. The realm of biome-
chanics includes the circulatory and respiratory sys-

tems, tissue mechanics and mechanotransduction, and the
musculoskeletal system and motor control. As in many other
biological phenomena, many spatial scales are crossed by bio-
mechanics research: intracellular, multicellular, and extracellu-
lar matrices; and tissue, organ, and multiorgan systems. It is
well established that the effect of forces at higher scales influ-
ence behavior at lower scales and that lower-scale properties
influence higher-scale response. However, computational me-
thods that incorporate these interactions in biomechanics are
relatively rare. In general, computational models that include
representation of multiple spatial or temporal scales are loosely
defined as multiscale. The fact that multiscale modeling is not
well defined lends the term to a variety of scenarios within the
computational physiology community. In biomechanics, multi-
scale modeling may mean establishing a hierarchical link
between the spatial and temporal scales, while the output of a
larger-scale system is passed through a finely detailed represen-
tation at a lower scale (e.g., body-level movement simulations
that provide net joint loading for tissue-level stress analysis). In
reality, multiscale modeling may require more intricate repre-
sentation of interactions among scales. A concurrent simulation
strategy is inevitable to adequately represent nonlinear associa-
tions that have been known for decades [1].

Multiscale Modeling
Multiscale modeling has existed for many years in basic science
and engineering areas such as mathematics, material science,
chemistry, and fluid dynamics. Computational and organiza-
tional issues common to all these disciplines have been ex-
plored, including but not limited to, the standardization of
methodology, the necessity of reliable data collection proce-
dures, the need for efficient and accurate algorithms, the lack of
coupling tools that address multiphysics phenomena, model and
data sharing, and public dissemination. Multiscale biomechanics
not only shares all of these common problems, but it is also hin-
dered by the restricted amount of data collection possibilities for

model development and validation, the large variability in ana-
tomical and functional properties, and the readily nonlinear
nature of the underlying physics even at single scales.

In this article, we describe some current multiscale model-
ing issues in computational biomechanics from the perspective
of the musculoskeletal and respiratory systems and mechano-
transduction. First, we justify the requirement of multiscale
simulations in these individual systems. Then, we summarize
challenges inherent to multiscale biomechanics, followed by
system-specific computational challenges. We discuss some
of the current tools that have been used to aid research in multi-
scale mechanics simulations and the priorities to further the
field of multiscale biomechanics computation. Overall, our
goal is to portray our understanding of the highly complicated
and time-sensitive discipline: the so-called multiscale biome-
chanics modeling.

The Need

Musculoskeletal System Perspective
Musculoskeletal modeling can provide the outlining principles
of locomotion including movement control and loading on the
hard and soft tissues and muscles. Commonly represented at
the body level, these models typically use simplified represen-
tations of joints (e.g., hip joint as a spherical joint), passive
structures (e.g., modeling of ligaments as nonlinear springs),
muscles (e.g., hill-type descriptions), and motor control strat-
egies (e.g., calculation of muscle forces using optimization). If
the goal is an overall explanation of muscle function and
movement at the body level, the added computational and
development costs of increasing the level of detail (therefore
introducing multiscale modeling) may not be warranted.

However, there are cases that warrant multiscale modeling
in the analysis of the musculoskeletal system. For example,
one may be interested in individual muscle fiber function [2]
or the stress–strain profile at the joints [3] during locomotion.
There are also scenarios in which models of muscle coordina-
tion coupled with the detailed representation of joints and tis-
sues are needed. In these cases, the interdependency of muscle
force and tissue response justifies a concurrent multiscale-
modeling approach. As an example, patellofemoral pain (PFP)
is a common disorder of the knee whose multifactor etiology is
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not well understood. It is believed that one mechanism of PFP
is excessive stress in the patellar cartilage. Both muscle activa-
tion [4] and muscle reflex response times [5] have been associ-
ated with PFP. In addition, the location of pain receptors in the
patellar subchondral bone [6], the influence of joint tissues
(such as the medial patellofemoral ligament [7]), and the com-
plexity of calculating cartilage stress indicate that a multiscale
approach would be beneficial. Temporomandibular joint dis-
orders provide a similar example where complex interdepen-
dencies exist between the temporomandibular joint disc and
activations of the powerful masticatory muscles [8]. It is gen-
erally believed that neuromuscular control is a significant fac-
tor in noncontact anterior cruciate ligament (ACL) injury [9].
Understanding noncontact injury mechanisms could be
enhanced with multiscale models that include detailed repre-
sentation of muscle (wrapping, activation, and fiber orienta-
tion) coupled with accurate representation of the ACL
(interaction with surrounding tissue, insertion areas, fiber ori-
entations, viscoelasticity, and damage accumulation) within a
body-level framework. Diabetic foot ulceration provides
another example where the interaction of muscle coordination
and tissue deformation is important. It is well known that dia-
betic foot ulceration has a mechanical etiology [10]. Patients
with diabetes have to perform similar activities of daily living
as healthy individuals. The simple task of walking may be
harmful because diabetes can affect various levels of biologi-
cal function from a mechanical perspective. Dysfunctions at
these levels manifest themselves in terms of loss of sensation
[11], changes in control of movement [12], and alteration of
tissue [13] and cell properties [14]. It is not clear how system-
level mechanical loads (e.g., contact forces at the foot) reflect
to cellular deformations that may cause cell damage and,
therefore, ulceration. Higher–organ level forces (e.g., in-
creased foot pressures), redistribution of stress due to changes
in tissue composition (e.g., muscular atrophy [15]) as well as
cell distribution within a tissue, and increased mechanical
loading of cells or their decreased damage resistance may all
have a role in ulceration. A multiscale modeling approach is
likely to identify the pathways to cell damage from organ-level
mechanical loading to cell-level deformations.

Holistic simulation of all the aforementioned conditions
requires models that optimize neuromuscular response concur-
rently with detailed models of dynamic tissue behavior, thus
emphasizing a multiscale approach in musculoskeletal biome-
chanics. A further requirement is that these multiscale models
have sufficient computational efficiency for optimization-type
simulations.

Respiratory System Perspective
Gas exchange at the respiratory surfaces of the lung is dependent
on adequate matching of ventilation and perfusion through com-
plex branching structures that are physically tethered to the sur-
rounding parenchymal tissue. Ventilation, perfusion, and gas
exchange are, therefore, intimately dependent on the relationship
between stress and strain in the lung parenchymal, airway, and
vascular tissues; how this varies regionally; and how it changes
with disease. Fredberg and Kamm [16] recently provided a com-
prehensive review of stress transmission in the lung, from cell to
organ. The review highlights the current state of knowledge of
the lung as a mechanical organ with organ-specific interdepen-
dencies that arguably make it the most complex system of the
human body in which to compute solid mechanics.

The lung parenchymal tissue is extremely delicate; yet, it is
required to undergo relatively large strain during the repeated
action of ventilation. The tissue accommodates change in the
tone of the airways or vasculature through a far lower resist-
ance to shear (and therefore to shape change) than to volume
change [17]. The lung tissue deforms readily (because of
gravity) with a change of posture, and the resulting regional
differences in volume expansion of the lung partly determine
the distribution of inspired air. The bronchi and blood vessels
are elastic structures that are subjected to internal air and
blood pressures, respectively, and through parenchymal teth-
ering they are also subjected to dynamic expanding forces
transmitted from the pleural surface. Transmission of force to
the airways or vessels depends on the integrity of this tether-
ing: respiratory diseases such as asthma or emphysema disrupt
mechanical tethering, but through different mechanisms.
Tethering of the arteries and veins extends to the level of the
pulmonary capillaries that essentially form the walls of the
alveoli. Lung tissue expansion causes expansion of the arteries
and veins, but the opposite is true for the capillaries, where tis-
sue expansion at the microstructural level equates to expan-
sion of the alveolar septae (and also potentially some
rearrangement of alveolar wall conformation) and results in a
reduction in the height of the capillaries. The cyclic motion of
the breathing lung also imposes dynamic forces at the cellular
level, affecting the regulation of structure, function, and
metabolism in a variety of cell types. For example, shear stress
through airflow is believed to be transmitted to the epithelial
cells, with a role in regulating airway surface liquid, and
stretch-sensitive ion channels in a number of cell types regu-
late an increased influx of calcium under mechanical stretch
[18]. Research in cellular mechanotransduction, as described
in detail in the following section, provides a wealth of infor-
mation on the cellular response to stretch or shear, but it is dif-
ficult to relate this knowledge to the function of the whole
organ without a multiscale computational framework in which
to interpret cell-level measurements. The previous examples
have considered the influence of the organ and tissue on
lower-level structures and cell. An example in the opposite
direction is the effect of bronchoconstriction on parenchymal
mechanics via tethering of the airway wall to the tissue.

The requirement for multiscale representation in lung
mechanics is therefore apparent: from lung interaction with
heart, chest wall, and diaphragm to the organ and its internal
structures; from the mechanical behavior of a complex func-
tional tissue and the major role that surface forces play in
determining this behavior, down to the level of the variety of
lung cells that respond to dynamic mechanical forces.

Mechanotransduction Perspective
The adaptation of tissue properties due to cell function and
mediated by the mechanical and biochemical environment has
long been recognized. The phenomenon of mechanotransduc-
tion is associated with many normal and pathologic processes
including bone remodeling, cardiovascular development, and
wound healing. However, though the roots of the theory of
mechanotransduction are more than 100 years old [19], mathe-
matical formulations for the theory that can address the com-
plexities of soft- and hard-tissue biomechanics have entered
into the modeling domain fairly recently.

Continuum manifestation of mechanotransduction is driven
by cellular and subcellular events, which immediately suggests
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two unique modeling strategies: capture the continuum-level
behavioral characteristics using mathematical laws of growth
and modeling or model fundamental cell–cell interactions on a
local level and allow the continuum properties to evolve
accordingly. The latter approach has been used in several
applications, including mesenchymal morphogenesis [20] and
trabecular bone adaptation [21], [22]. These analyses are
driven by local, relatively simple differential equations that
govern the evolution of, for example, bone or cell density,
from which continuum-level patterns may emerge. The former
approach relies on solving continuum-level equilibrium equa-
tions and is reviewed further below. The multiscale nature of
this problem, then, is the efficient interfacing between these
two approaches.

The effects of mechanotransduction include growth and
remodeling, which are typically considered as unique proc-
esses [23], representing mass–volume changes due to bulk
material deposition or resorption versus structural changes
including trabecular or fiber realignment, respectively. Devel-
opment of models of these processes involves both constitu-
tive formulation (constructing mathematical models that
govern the evolution of the state of the material) and computa-
tional implementation of the constitutive model, typically
within a finite element framework with a few exceptions [21].

Basic constitutive formulations have been posed in terms of
evolution laws for the geometry of a basic construct, for exam-
ple, a cylindrical vessel [24]. In addition to being a continuum
formulation for what is inherently a multiscale, multiphysics
process, these formulations assume homogeneity of material
response. More rigorous constitutive formulations look at the
pointwise response of the material, although still in the contin-
uum sense. The continuum mathematical concept of the defor-
mation gradient is decomposed into an elastic component and
a growth component [25]. The growth component effectively
alters the reference state of the material and is, thus, able to
capture phenomena such as residual stress and opening angle
in vasculature [26] and fiber recruitment and alignment in
engineered tendon constructs [27]. The constitutive problem
is then to pose the evolution law for the growth component of
the deformation gradient in terms of some metric of the local
mechanical state including stress [24], strain [28], stiffness
[29], or strain energy density [30]. This approach is similar
mathematically to nonlinear inelastic constitutive models
[31], in which the deformation gradient is decomposed into an
elastic component and a viscous–plastic component.

Much of the computational work of geometric and structural
adaptation of bone in response to mechanical loading has
involved alteration of the mechanical properties (e.g., density
and elastic modulus) of a constituent element or voxel in the
computational model, and net addition or subtraction of that
element or voxel [30]. Computational models of growth or
remodeling of soft tissue are also typically finite element based
and can be realized by incorporating user-defined material
properties reflective of the inelastic processes into general pur-
pose finite element analysis software [30]. These models are
again typically continuum based, employing laws for local ele-
ment adaptation based on the continuum state.

From a different perspective, mathematical and computa-
tional models for cell–matrix interactions have been used to
predict cell migration within anisotropic tissue, tissue defor-
mation due to the contractile properties of adherent cells, and
fiber reorientation [32]. This approach has been used for hard

tissue (bone) to predict remodeling [33] and callus formation
[18] and can also be used in conjunction with fiber-based
constitutive models for soft-tissue behavior to predict evolu-
tion of material properties due to cell–matrix interactions.
However, such an approach is again continuum based.

The case for multiscale modeling of mechanotransduction is
based on the physiological underpinnings of the process itself.
Although not yet fully understood, mechanical stimuli are
transduced into the cell through structural (integrins that
mechanically link the extracellular matrix to the cytoskeleton
and in turn the nucleus) and biochemical (stress-based activa-
tion of transmembrane ion channels or surface growth factor
receptors) pathways [34]. Once internalized, a cascade of in-
tracellular processes ensues, which drives cell function in-
cluding motility, contraction, proliferation, differentiation,
and fibrillogenesis. Continuum-based formulations for mecha-
notransduction treat these cellular and subcellular processes as
black boxes. Although such treatment has been shown to suc-
cessfully capture tissue-level aspects of growth and remodel-
ing, it has been argued that governing the response of cells
using mathematical concepts such as stress or strain is inher-
ently unsatisfactory [35]. Additionally, mathematical coupling
of fundamental cellular processes with their effects on the geo-
metric, structural, and constitutive environment, and in turn
continuum-level boundary conditions on cell function, can be
used to drive functional tissue engineering, understand and
better treat pathologic growth or remodeling (hypertrophy),
and develop combined mechanical and biological solutions to
trauma and joint reconstruction.

Challenges
Using computer models to simulate biological phenomena,
regardless of spatial and temporal scales, involve the associ-
ated costs in labor and computation. First, any modeling and
simulation platform relies on well-developed tools that facili-
tate defining models and allow simulations to be conducted in
reasonable time frames. Developing robust tools is labor inten-
sive and requires expertise in computational science and
mathematics. Given model development and numerical solu-
tion tools, another labor-intensive step relates to the develop-
ment of a model, which is directly related to the research
discipline. Compiling adequate model input parameters and
representing anatomical structures (e.g., generating meshes of
complex geometry) are all part of this process. This is usually
a hidden cost, not necessarily reported with the results of the
studies. After model development, the next step is to use the
model to simulate conditions to answer clinical or research
problems. Simulations, particularly in multiscale modeling
where coupling between physical domains and scales is neces-
sary, are computationally intensive. Solutions may be ob-
tained, but their interpretation may also be challenging,
relying on an expert, possibly spending hours to confirm the
validity of results and then extracting useful information appli-
cable to the research area. All these general challenges can be
addressed in a research setting, if the development cost of tools
and models against decreased research output can be afforded.
However, the urgent nature of clinical problems increases the
burden on model developers, highly demanding easy-to-use
and robust models combined with timely solutions.

Modeling in tissue mechanics requires reliable software to pre-
pare models, to solve them, and later to process the results. Prepa-
ration of models usually requires data to reconstruct anatomical
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geometry, to represent characteristics specific to a physical
domain of interest, to describe simulation conditions, and for
validation. Hardware for model preparation and visualization
of results usually requires graphical processors capable of
handling large datasets. In general, the simulation process
needs hardware with high-speed numerical computation capa-
bilities and a large memory. It is not uncommon to use high-
performance computers with multiple processors and parallel
processing using shared or distributed memory architectures.

For multiscale modeling and simulations, software, hard-
ware, and data needs increase. In general, specific and special-
ized computational tools are used at each dimensional scale of
the musculoskeletal system. Linking and concurrently passing
information across scales, each using the diverse computa-
tional methods, presents a challenge. The primary computa-
tional tools of musculoskeletal modeling include multibody
dynamics at the body level, continuum finite element methods
at the organ level, and specialized algorithms and solvers at
the tissue–cell level. The multibody method is computation-
ally efficient but lacks the complexity to accurately capture
tissue behavior. Finite element models of organs can estimate
tissue deformation but are typically intensive in both model
preparation and computational time. Combinations of mea-
sured electromyographic activity (EMG), ground reaction
forces, kinematics, musculotendon dynamics models, muscle
activation optimization schemes, and forward or inverse dynam-
ics can predict net joint loading and the forces of individual
muscles. Joint loading and muscle forces can then provide input
to finite element models that calculate tissue deformation. For
example, predicted quasistatic muscle forces and relative bone
displacements have been used to provide boundary conditions
for finite element prediction of cartilage stress [36]. In this
scheme, parameters at the organ and tissue levels are not part of
the muscle control strategy. The finite element method and opti-
mization-based force prediction can be coupled [37], but the
computational cost of repeatedly solving the finite element
model is prohibitive. In addition, unless time history is also
passed between the separate computational domains, vis-
coelastic behavior and contact friction cannot be represented.

At the body level, predictive simulation of musculoskeletal
movements is possible by using forward dynamics and opti-
mal control of muscle activations [38]. Such simulations are
able to predict muscle control patterns for performance-
related activities such as maximum height jumping [39] and
for efficient movements such as walking with minimum
energy expenditure [40]. These simulations are already costly
because of repeated integration of the equations of motion to
solve for an optimal muscular control pattern. Nevertheless,

adding another level of complexity by introducing models at
tissue or even cell scales have practical implications. For
example, one can design rehabilitation strategies that fine tune
system-level loading to promote healing through cell-level
remodeling. In addition, safe movement strategies can be pre-
dicted to prevent tissue-level failures. Concurrent simulations,
coupling forward dynamics of a musculoskeletal multibody
system with tissue-level finite element models, are possible
(Figure 1). However, this increases the computational cost of
movement prediction using single forward dynamics solution
from seconds to hours [41]. The optimal control procedure,
which may be seeking minimum tissue stress, can require hun-
dreds if not thousands of these simulations.

Validation of multiscale musculoskeletal models depicts
another significant challenge. The current state of in vivo data
collection for the musculoskeletal system comprises muscle
activations, body segment motion, and ground reaction forces.
In addition, musculoskeletal organ geometries can be obtained
through magnetic resonance imaging (MRI), although high-
resolution images require in vitro MRI or computed tomography
(CT) scans. With the exception of a few limited instances,
muscle forces cannot be measured in vivo. Models that involve
estimation of muscle force typically verify model predictions
through the measurement of muscle activation (EMG) [42].
Organ, tissue, and subtissue data collection is typically in vitro.
This may include mechanical properties of cortical bone, orien-
tation of collagen fibers, and protein content. The lack of in vivo
subject-specific data and the complexity and cost associated
with experimental measurements emphasize the need for data
repositories for musculoskeletal biomechanics. Parameter sensi-
tivity studies coupled with statistical populations of in vivo and
primarily in vitro data may provide feasible validation routes.

In the study of the mechanics of the lung tissue, the main chal-
lenge remains as it stood nearly 25 years ago: ‘‘first, stress–strain
relations, based on independent material testing or microstruc-
tural modeling with some conformational testing, are needed.’’
[43]. Early computational studies of lung–tissue mechanics used
linear elastic theory and linear material constants, treating the
lung as a uniformly inflated structure subjected to an incremen-
tal deformation [44]. The approach was extended by solving for
successive small displacement increments and using elastic
moduli that were dependent on the associated incremental
change in transmural pressure [45]. In reality, the lung under-
goes relatively large strain during normal breathing, requiring
many of these small increments and potentially accumulating
numerical error with each increment; however, the appeal of the
linear elastic approach is clear: the governing equations are
simpler than equations valid for large deformations, enabling

analytic solutions for simple shapes and
loading [46], and the elastic moduli are
obtained relatively easily [17].

However, an accurate analysis requires
the use of governing equations that are
valid for large deformations, i.e., finite
deformation elasticity. Relatively few stud-
ies have used large deformation theory,
and all of these have had to compromise to
some degree in their constitutive law [47].
The elasticity of the lung parenchyma com-
prises a tissue contribution and surface
forces due to the alveolar air–liquid inter-
face. The magnitude of the surface forces

Fig. 1. Concurrent simulation of multibody dynamics and tissue deformations is
possible as illustrated by this jumping simulation. Multibody dynamics was con-
trolled by muscle actuation and calculated by forward dynamics solution of
rigid body equations. Finite element analysis of the foot was conducted at each
time step to predict foot stresses.
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changes with surface area, and surface tension distorts the alveo-
lar geometry as the tissue expands or recoils [48]. A mathemati-
cal model of the tissue microstructure that includes interaction
between alveolar structure and surface tension has been devel-
oped [49], but to date, this has not been extended to link with the
tissue-continuum level. Such a link could be made using the
approach presented in [50], where moduli were derived based
on an analysis of the elastic response of a model of the lung
microstructure. Experimental testing of lung tissue to determine
the relationship between stress and strain is technically difficult
and is performed on tissue without its normal surface forces.
When there is no surface tension, the tissue component of the
parenchymal elasticity is different to that in the intact, in vivo
lung, because surface tension results in distortion of the tissue
causing more elastic energy to be stored. Gathering sufficient
accurate data on which to base the derivation of a constitutive
law is therefore exceedingly difficult. Ideally, an analysis of
lung tissue mechanics would also account for viscoelasticity and
tissue hysteresis, and the different contributions of (and interac-
tion between) tissue elasticity and surface forces.

Current Tools
Software to develop musculoskeletal models and to simulate
or analyze movements is maturing and becoming freely avail-
able [51]. These tools promise an open architecture, potentially
allowing linking with physiologically realistic simulations of
tissue–cell deformations and multiscale muscle models. Finite
element analysis packages that focus on biological problems
are also provided for free [52], with developers open to imple-
ment customization specific to research fields. Nevertheless,
current multiscale analysis of the musculoskeletal system is
still based on individualization of such tools. The aforemen-
tioned examples from other disciplines also illustrate the chal-
lenges associated with model preparation and solution. While
both these aspects of multiscale modeling can be computation-
ally intensive, model preparation can, in addition, be quite
labor intensive, often to the point where the analyst invests
more time in model creation than in model analysis. Overall,
this is to the detriment of science (consider the challenges
presented by the linking of scales between the level of the
organ and the cell). Organs themselves typically span multiple
geometric scales (compare the size of cardiac valves to the
coronary arteries or the size of the trachea to the terminal bron-
chioles). Efficient grid generation across these geometric
scales needs to be somewhat structured so that the physics of
both scales are correctly resolved, for example, the transition
from convection-dominated to diffusion-dominated mechan-
ics in the lung. With complex biological domains, this can be
daunting. Furthermore, because organs are by definition spa-
tially heterogeneous arrangements of cells, mechanical proper-
ties with efficient continuum representations such as tissue
elasticity or mass transfer emerge in a spatially heterogeneous
fashion from the cellular and extracellular constituents of tis-
sue. Some examples are the spatial arrangement of myofibers
in the heart, of collagen and elastin in heart valves and arteries,
or of the smooth muscle in the lung. Structural constitutive
models, as opposed to phenomenological models, of these
continuum fields are highly desirable as they can substantially
contract the parameter space. However, this requires the effi-
cient identification and mapping of these cell-level compo-
nents to a computational grid. In cases where cell activity is
modeled together with organ-level fields, this mapping must

be a two-way communication. This latter scenario demands
efficient geometric databases that can organize time varying
organ- and cell-level inputs and outputs. Later, we outline
some current and evolving efforts to meet these challenges.

Several excellent isotropic unstructured tetrahedral grid gen-
eration algorithms exist for creating finite-element or finite-
volume grids from imaging-derived closed triangulated mani-
folds [53]. Isotropic algorithms attempt to construct tetrahedral
elements with nearly equal internal angles and approximately
equal edge lengths. However, with medical imaging data, the
lengths of these edges are typically more related to the resolu-
tion of the image than they are to the physics to be solved and
do not take the geometric scale into account. Moreover, the tes-
sellation of the volume is typically disordered. Structured grids,
typically structured hexahedral grids, are computationally effi-
cient and can be made to fit the physics of the problem, but
structured grids can be laborious to construct if they can be con-
structed at all. Forecasts for petascale computing envision that a
fourfold increase in speedup will come from adaptive gridding,
whereas only a one and a half fold speedup will come from
increased parallelism [54]. These forecasts forcefully apply to
large-scale biomedical problems. A compromise between fully
disordered tetrahedral grids and structured hexahedral grids are
a new class of algorithms that automatically generate struc-
tured, scale-invariant tetrahedral grids from medical imaging
data [55]. These grids are well suited to large-scale computa-
tions as they can be designed to concentrate computational grid
where it is needed while keeping the overall computational cost
of the problem tractable. They are also structured in the sense
that elements can be automatically arranged in a user-specified
number of nearly orthogonal layers.

The approach (Figure 2) consists of defining a feature-size
field on single or multiple material input triangulated surface
mesh derived from single or multiple material Marching Cubes
algorithms. This is accomplished without a background grid and
without referencing the medial axis. Thus, determination of the
feature-size field is not only computationally efficient but also
robust in the sense that it is continuous and does not change
unreasonably under perturbation of the surface mesh. Before
volume mesh generation, the input surface mesh is modified
(refined and derefined) so that edge lengths are proportional to
the feature-size field, with the constraint that refinement or dere-
finement preserves topology and curvature. Surface modification
is iterated with a volume-conserving smoothing [56], with the
result that surface triangles are well shaped, well organized, and
graded. Volume-conserving smoothing also maintains the
enclosed volume to within machine precision with respect to the
original voxelated volume. From these, possibly multiple, modi-
fied surfaces, a user-defined number of structured layers are con-
structed across arbitrarily oriented cross-sections in the domain,
independent of scale. User intervention consists solely in specify-
ing the desired number of layers and the desired element anisot-
ropy. Additionally, a scale-dependent function may be specified.
A constant function, for example, would result in a constant num-
ber of layers independent of scale. A linear function would pro-
portionally increase or decrease the number of layers at either the
top or bottom scales. Functions may be completely arbitrary.

Once an efficient computable grid has been defined, it is
necessary to establish a bridge between measurements of cell-
level data and the organ-level model. These data can become
the inputs to upscaling approaches in which effective reac-
tion–diffusion equations or elasticity tensors are locally
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defined by homogenizing cells and extracellular proteins over
spatial windows of several cells. Alternatively, they can be
stored in the computational cells of the organ-level model to
drive complimentary cell-level models. In either case, some
averaging of data inevitably occurs. In the case where these
data derive from imaging modalities such as MRI, positron
emission tomography (PET), or CT, volume-to-volume map-
ping can be done efficiently [57] and can be made to tolerate
modest geometric mismatching. However, often in multiscale
models, upscaling is used to define boundary conditions. This
requires a conservative volume-to-surface mapping. Along
these lines, more work needs to be done.

If voxel to unstructured grid mappings are presently feasible,
a much greater potential source of cell-level data is histology
[58]. However, histology-based data (fluorescence, autoradiog-
raphy, in situ hybridization, proteomics, immunohistology, or
simple hematoxylin and eosin staining) pose two fundamental
challenges: reconstruction and quantitation. Reconstruction is
challenging because sections that are thin enough to reveal cell-
level detail under analysis are also prone to distortion during
the process of sectioning. Some recent algorithm development
has been dedicated to accurate reconstructions without a refer-
ence geometry, especially in neuroscience [59]. These and
related algorithms attempt to affect local nonlinear warp trans-
formations on a slice-by-slice basis in an effort to rectify these

distortions. These efforts are promising, but more work is
needed to extend and adapt these approaches to other organs
such as the heart and lung. Quantitation can be challenging
depending on the modality. For example, with in situ hybridiza-
tion, messenger ribonucleic acid (mRNA) for a specific marker
is hybridized to the tissue, and the signal strength is propor-
tional to the local concentration. The ability to quantitate that
signal in at least a semiquantitative fashion is essentially an
image-processing problem [60]. Here again, work in neuro-
science indicates a possible path for multiscale tissue modeling,
where markers can be specialized for collagen, elastin, and
muscle fibers, and histology can provide both spatial informa-
tion and local density [58].

Once these data have been referenced to a single geometry,
whether voxelated or not, they may be efficiently mapped to
unstructured grids with the same methods as are applied to mag-
netic resonance (MR) or CT data [57]. However, the sheer
volume of data represented by histological data with near cellu-
lar resolution is prohibitive for efficient communication between
the computational grid and the three-dimensional (3-D) data-
base. A preferable solution is to adopt a multiresolution, grid-
based approach [61], allowing the resolution of the 3-D database
to be adapted to the averaging window that works best for the
communication between scales.

In summary, multiscale modeling requires, at its foundation,
measurement and communication of data between scales. To
be useful to the biomedical engineer, the construction of qual-
ity computable grids and the one-way or two-way communica-
tion of data to and from these data over multiple scales must be
fully automatic and accessible. One persistent challenge will
be the registration of multiple datasets from different modal-
ities to a common geometric database. Although some of these
concepts overlap with atlasing projects, such as the Allen Brain
Atlas [62], there is a need to adapt these approaches to the
needs of the modeling community by developing procedures
and algorithms that make the communication of data routine.

Priorities
Computational biomechanical modeling typically requires a
level of customization beyond what is possible with commer-
cial tools. This is even more forcefully true with multiscale
modeling where codes that are specialized for different scales
often must communicate, more and more often in parallel. At
the same time, a plethora of laboratory-specific codes entails
unnecessary duplication, and commonly less effective codes
due to the substantial investment required. In contrast, the
open-source paradigm is a proven model for complex software
development that has the capacity to effectively create compu-
tational tools that are geared to the needs of multiscale model-
ing, while enabling unlimited customization through access to
the source code. A few examples of highly successful open-
source projects of relevance to multiscale modeling are the
image processing and registration toolkit, Insight Segmenta-
tion and Registration Toolkit (ITK) [63], another similar tool,
3-D Slicer [64], and the post-processor Paraview [65]. The
National Institutes of Health (NIH) sponsored SimTK project
[66] is another example that aims to bring together multiple
components geared toward molecular, neuromuscular, and
cardiovascular dynamics. A few common aspects of success-
ful open-source projects are that they are funded, supported by
the biomedical community, and well organized. The organization
of open-source efforts around task-oriented components that are

(a) (b)

(d)(c)

(f)(e)

Fig. 2. Automatic quality scale invariant meshing: (a) recon-
struction of a mouse heart; (b) computable grid of a mouse
nose; (c) feature-size field defined on a rat lung; (d) detail of
structured layered grid; (e) and (f) feature-size field and struc-
tured mesh of a human heart (inset shows the mitral valve).
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designed to work together [image segmentation, grid generation
and management, inverse parameter estimation, computational
continuum mechanics, network models, system-level models,
ordinary differential equation (ODE) solvers, one-dimensional
(1-D) and two-dimensional (2-D) partial differential equation
(PDE) solvers, etc.] would greatly enhance the ability of multi-
scale modelers to focus on biomedical problem solving and dis-
covery, the ultimate goals of biomedical multiscale modeling.

Model sharing also has the potential to empower the multi-
scale modeler by providing a library of models that can be
combined across scales for a given application. However, one
roadblock to effective model sharing is the lack of a standard
format. This problem has been recognized by computational
practitioners outside of the biomedical field and has led to such
projects as computational fluid dynamics general notation sys-
tem (CGNS) [67]. The goals of CGNS, as an example, provide
an interesting model for the biomedical modeling community
in that they provide, in collaboration with commercial entities,
a standard format that is self-descriptive, machine independ-
ent, and well documented. This paradigm has been so success-
ful that virtually all major commercial computational fluid
dynamics codes support it. However, CGNS is more than a for-
mat. It is a comprehensive, open-source data archiving system
with standard naming conventions that provide definitions of
boundary conditions, solver specifications, and convergence
history, such that a solution obtained in one commercial or
research code can be restarted directly in another code. To
assure consistent implementation, the project provides easy-
to-implement midlevel libraries in all major computer lan-
guages. Adoption of a common database and format is compli-
mentary to a common interfaces approach and is foundational
to successful open-source projects in multiscale modeling.

Dissemination of a solution database with model distribution
may have practical value. Multiscale simulations involve many
models at the bottom of the solution hierarchy, which usually
have an input–output (I/O) relationship with the models at a
higher level. Solution for these models is requested frequently
while solving for the higher-level model, and in many cases,
individual solutions are costly. This can be seen in multilevel
finite element models of tissue–cell interactions [68] and in
musculoskeletal modeling where rigid body movement simula-
tions requesting simulations of a tissue-level finite element
model at each time step [41]. If a solution database exists, one
can build a fast surrogate model to represent the (I/O) relation-
ship. These surrogate representations can be based on a global
fit (e.g., response surface [69], which were commonly used in
optimization problems), local regression (e.g., moving least
squares [70]), or neural networks [71]. For example, a surrogate-
type modeling approach uses discrete mass–spring damper mod-
els (Figure 3) to represent soft tissue. Parameters for the mass–
spring damper network are optimized to fit tissue deformations
from either experimental measurements or finite element simu-
lations [72]. Alternatively, adaptive strategies can be adopted,
which estimate a fit or interpolation error and simulate the com-
plicated model only when needed. By using adaptive surrogate
modeling techniques based on local weighted learning [73], it is
now possible to solve optimal control problems that require con-
current simulation of musculoskeletal movements and tissue
deformations. Muscle activations for a jumping simulation (Fig-
ure 1) can now be predicted by using a surrogate model of foot
deformations. This approach requires costly finite element anal-
ysis to be conducted only for approximately 30% of the time.
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