Haptics in Robotic Assisted Surgery

Patrick DiNicola
Kile Cleer
BME 473 Course Project Presentation
Outline

- Need for minimally invasive surgeries
- Overview of robotic-assisted surgery
- Haptics
- Sensors
- Proposed project
Why Should You Care?

• Robotic Assisted Surgery can provide many benefits
 • Teleoperated
 • Corrections for Human Error
 • Smaller Incisions
 • This all leads to shorter hospital stays
What is Laparoscopic Surgery

• Named after the Laparoscope

• Also known as Minimally Invasive Surgery (MIS)

• First performed in 1987: cholecystectomy

• Performed through small incisions

• Abdomen inflated with CO2

• Trocars inserted to create portals for instruments

• Fulcrum Effect
Laparoscopy vs Open Surgery

Laparoscopic
- 3-5 half inch incisions
- less pain, less scarring
- faster discharge time
- reduced risk of infections
- fairly new

Open
- incisions 6-12 inches
- considerably longer hospital stay and larger degree of pain
- are considered the standard
History of Robotic Surgery

- The PUMA 560
 - 1st Robot used in surgery
- ROBODOC
 - 1st FDA approved robot
- Computer Motion Develops AESOP and ZEUS
 - Bought out by Intuitive Surgical
- Intuitive creates da Vinci, ZEUS off market
da Vinci Surgical System

- Approved by FDA in 2000
- 3 Main Components
 - Surgeon’s Console
 - Patient Cart
 - Vision System
- 200,000 surgeries performed in 2012
Benefits of Robot Assisted Surgery

• Vision (vs Laparoscopic)
• Dexterity
• Tremor Reduction
• Movement Scaling
• Fatigue Reduction
Main Issues with Robotic Surgery

• Palpation
 • Surface Characteristics
 • Pulse Readings
• Knot Tying
Background on Haptics

- “sensing by touch”
- CHARM Lab: Dr. Allison Okamura
 - Teleoperations
 - Surgery and Training
Previous Research in Haptics

• Methods for haptic feedback in teleoperated robot-assisted surgery
 • Dr. Okamura
 • Strain Gauges
 • Kinematics
 • Visuals

• Haptic Feedback in Robot-Assisted Minimally Invasive Surgery
 • Dr. Okamura
 • Mostly Force Feedback
 • Mahvash et al. Palpation
 • Reiley et al. Knot Tying
Previous Methods Cont.

- Palpation Probe
- SynTouch Biotac
Sensors

Tactile Sensors
- Respond to contact forces
- Localized Interaction
- Array of touch sensors
- Slip sensing - relative movement
- Higher hardware demand

Force/Torque Sensors
- Measure total forces
- Force feedback to hand
- Integration in dextrous instruments
- Not all DOF accounted for
- Delays and feedback
Goals in Haptics

- Imitate the human tactile response
- Real-time feedback to surgeon
- Surface and pulse detection
- Varied responses
- Frequency responses
A Novel Probe

- Piezoelectric effect
 - Quartz or transition metal ceramics
- Soft sensor probe
- Vulcanized silicone rubber “skin”
- Dilatant fluid
 - Silicon suspended in PEG
- Multiple piezoelectric pressure transducers
Why and How it Helps

- Piezoelectrics are small
- Self-exciting sensor
- Chemically inert and flexible
- Extremely high accuracy
- Low hysteresis
- High repeatability
- Give feedback to operator
Benefits/Projected Outcome

- Real time fast response
- Sensitivity
- Wide dynamic signal range
- Allow Surgeon to Palpate the tissue through the Robot
 - Geometry
 - Pulse
 - Surface (rough, smooth, etc.)
- Knot Tying
 - Feel tightening of knot and feel if the tissue is being deformed
Wrapping it up..

• What is RAS and why should we care?
• How does RAS improve Laparoscopic procedures?
• What is the field of haptics?
• Previous Research in haptics
• Our proposed idea to integrate haptics into RAS
References

- http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701448/
- http://X2bQ18x2ZEFt41AUAshm1aQAAa7p/Ka1nt5t4XK//1x00/human-hand-cyber-hand.jpg
- http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1317565/
- http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701448/