Developing an Optimized EMS User Guide to Enhance Muscle Architecture

Natalie Ledezma

Carli Stewart

http://www.menshealth.com/

https://kidsdiscover.com

Project Aims

- 1. Evaluate prior studies involving electromyostimulation (EMS) to determine its effect on muscle cross-sectional area, torque, and pennation angle
- 2. Compile the results of the previous investigations to determine an effective plan-of-use for EMS
- 3. Test this plan-of-use in different population groups in order to ensure adequate applicability

EMS:

The use of electrical impulses to elicit muscle contractions

Leads to significant changes in :

- Muscle cross-sectional area
 - > Pennation angle
 - ➢ Muscle torque

https://www.shocktherapyfitness.com/ https://www.lazada.com.ph/shop-core-abdominal-trainers/ https://www.nancyandersonfit.com/blogs/news/ems-training-is-this-new-fitness-craze-legit

Importance of Affected Muscle Architecture Properties

<u>Cross Sectional Area:</u> property of muscle architecture that is directly proportional to the force that a muscle can generate $F_o^m \alpha PCSA$

https://www.tandfonline.com/doi/full/10.1080/10255842.2014.917294

<u>Pennation Angle:</u> The orientation between a muscle fascicle and tendon.

$$\mathbf{f}_t = \sum_i \mathbf{f}_m^i \cos(\mathbf{P}\mathbf{A}^i).$$

<u>Muscle Torque</u>: The ability of force to cause a rotation about a lever. The greater the torque, the greater the movement produced on the body's "levers."

Potential Impact

Users

In the US alone:

- 16 million adults have COPD
- 68.7 people are over the age of 60 years old
- ~5,000 professional athletes
- ~45 million adults have a gym membership

Estimated Cost

- Electrodes:~\$15/40 pads
- Portable Stimulator: ~\$250-500

https://www. compex.com

Variables in EMS

- Total Weeks
- Sessions/week
- Impulse Interval
- Impulse Waveform
- Impulse Frequency
- Impulse on-time

https://whatis.techtarget.com/definition/waveform

Aim 1: Cross Sectional Area

Authors	n	Sex	Age	Sessions/ week	Total Weeks	Impulse Interval	Impulse Form	Impulse Frequency	Impulse On-Time	Percent Difference
Gondin et al.	22	male	23.5±5	4	8	18 min sessions	Rectangular wave, pulse	75 Hz	400 µs	3-10% increase
Vivodtzev et al.	22	8 male 4 female	70±1	5	6	35 min quadriceps; 25 min calf	Not mentioned	50 Hz	400 µs	6%±2% increase in both
Oliveira et al.	33	male	22.1±2.6	3	6	15 min sessions	Medium is biphasic (rectangular/si nusoidal)	Low: 1-100 Hz Medium: 1-10 kHz	500 µs	Thicker muscles
De Abreu et al.	15	Male (quadripl egia)	32.2±3.5	2	24	20 min sessions	NMES	25 Hz	300 ms	15% increase
Lotri-Koffi et al.	23	C57BL6 male mice	16-week old	5	2.5	20 min sessions	symmetrical , biphasic, square-pulsed	50 Hz	150 µs	~6% increase

Aim 1: Pennation Angle

Authors	n	Sex	Age	Sessions/week	Total Weeks	Impulse Interval	Impulse Form	Impulse Frequency	Impulse On-Time	Percent Difference
Gondin et al.	22	Male	23.5±5	4	8	18 min sessions	Rectangular wave, pulse	75 Hz	400 µs	14±7% increase
Oliveira et al.	33	male	22.1±2.6	3	6	20 min sessions	Medium is biphasic (rectangular/sinusoi dal)	Low: 1-100 Hz Medium: 1-10 kHz	500 µs	No difference

Aim 1: Torque

Authors	n	Sex	Age	Sessions/ week	Total Weeks	Impulse Interval	Impulse Form	Impulse Frequency	Impulse On-Time	Percent Difference
Maffiulett i et al.	8	male	20.4±2.1	4	4	18 min sessions	Rectangular wave, pulse	75 Hz	400 µs	8.1-10.8% increase
Oliveira et al.	33	male	22.1±2.6	3	6	15 min sessions	Medium is biphasic (rectangular/s inusoidal)	Low: 1-100 Hz Medium: 1-10 kHz	500 µs	Alternating: 19.6% Pulsed: 17.8%
Colson et al.	25	male	24±2.5	3	7	5 sets of 6 contractions every 3 minutes	Rectangular wave, pulse	80 Hz	240 µs	At 120°: +15.9±4% At 60°: +18.2±5% At 30°: +15.8±4%

Aim 2: EMS Plan-of-Use

- Frequency of EMS training sessions:
 - 3 times per week
 - 20 min sessions
 - 8 weeks or more
- Intensity: gradually increase until the maximum tolerated
- Waveform: Biphasic
- Frequency: 75 Hz
- Impulse on-time: 400 µs

Aim 3: Testing

Conduct three 8-week studies that use the previously outlined plan to test changes in quadricep muscle architecture properties in the following groups:

- 1. COPD patients 30 total participants (Experimental (15) & Control (15))
 - a. Age: 45-55 years old
- 2. Athlete Group 30 total participants (Experimental (15) & Control (15))
 - a. These participants will be from the same sports team
- 3. Young Adults 30 total participants (Experimental (15) & Control (15))
 - a. 20-25 years of age

Testing Conditions

Equipment:

- Cross Sectional Area Measurements:
 - B-mode ultrasonography
- Pennation Angle Measurements:
 - B-mode ultrasonography
- Torque Measurements:
 - Biodex-type Isokinetic Ergometer: measure
 muscle contractions

Constant variables:

- Time EMS sessions are held
- 60° knee flexion
- Frequency

https://m.biodex.com/physical-medicin e/blog/what-isokinetic-testing

Expected Results

We expect to see:

- Significant increases in muscle architecture properties for each experiment
- Comparable changes between experiments

If the changes are not significant in one group, then we will reevaluate our EMS plan for the specific population group and test again. Table 1. Quadriceps cross-sectional area of each individual in the gait group

Gait group	Level of injury	Cross-sectional area (cm ²)			
		Before	After		
1	C5	60.2	73.3		
2	C4	59.1	69.3		
3	C5	57.2	60.7		
4	C4	38.9	53.0		
5	C4	47.5	51.4		
6	C5	48.5	52.8		
7	C7	34.5	41.1		
8	C6	52.5	56.9		
Mean		49.8	57.3		
Standard deviati	on	9.4	10.3		

DOI 10.1007/s11999-008-0496-9

Thank You!

References:

- Lee, D., Li, Z., Sohail, Q. Z., Jackson, K., Fiume, E., & Agur, A. (2015). A three-dimensional approach to pennation angle estimation for human skeletal muscle. *Computer Methods in Biomechanics and Biomedical Engineering*, *18*(13), 1474-1484.
- Gondin, J., GUETTE, M., BALLAY, Y., & MARTIN, A. (2005). Electromyostimulation training effects on neural drive and muscle architecture. Medicine & Science in Sports & Exercise, 37(8), 1291-1299.
- Lotri-Koffi, A., Pauly, M., Lemarié, E., Godin-Ribuot, D., Tamisier, R., Pépin, J. L., & Vivodtzev, I. (2019). Chronic neuromuscular electrical stimulation improves muscle mass and insulin sensitivity in a mouse model. *Scientific reports*, 9(1), 7252.
- Vivodtzev, I., Debigaré, R., Gagnon, P., Mainguy, V., Saey, D., Dubé, A., ... & Maltais, F. (2012). Functional and muscular effects of neuromuscular electrical stimulation in patients with severe COPD: a randomized clinical trial. *Chest*, 141(3), 716-725.
- Maffiuletti, N. A., Pensini, M., & Martin, A. (2002). Activation of human plantar flexor muscles increases after electromyostimulation training. *Journal of applied physiology*, 92(4), 1383-1392.
- Oliveira, P., Modesto, K. A. G., Bottaro, M., Babault, N., & Durigan, J. L. Q. (2018). Training Effects of Alternated and Pulsed Currents on the Quadriceps Muscles of Athletes. *International journal of sports medicine*, *39*(07), 535-540.
- Colson S. S., Martin A., van Hoecke J. (2009). Effects of electromyostimulation versus voluntary isometric training on elbow flexor muscle strength. J. Electromyogr. Kinesiol. 19 e311–e319. 10.1016/j.jelekin.2008.05.009
- de Abreu DCC, Cliquet Jr A, Rondina JM, Cendes F. Electrical stimulation during gait promotes increase of muscle cross-sectional area in quadriplegics: a preliminary study. Clin Orthop Relat Res 2009;467(2):553–7

