Progressing Quadruped Robotics Through Mass Specific Loading

Samantha Bratcher and Jack Deinhart
Advantages of Quadrupedal Robots

- More natural movement
 - Translation in all directions
 - Turn in place
 - Increased maneuverability

- Wider range of functionality and flexibility
 - Improved adaptability when crossing uneven terrain/surfaces
 - Further applications in outdoor tasks
Spot by Boston Dynamics

Specifications
- Speed 1.6 m/s
- Runtime 90 min.

Features
- 360° vision using stereo cameras
- Operating environment from -20°C to 45°C
Spot by Boston Dynamics
MIT Mini Cheetah

Specifications
- Speed 2.45 m/s
- Low cost
- Lightweight

Features
- Independent translation and rotation
- Backflips
MIT Mini Cheetah
Gaps in Robotic Motion Advancement

- Unstable in certain conditions
- Can be slow due to unoptimized algorithms
- Current algorithms do not allow for adaptability
- Can be loud
Research Proposal

Computational modeling of the effect of mass specific loading on quadruped animal gait for the advancement of quadruped robot gait.
Previous Literature

- Effects of loading and size on maximum power output and gait characteristics in geckos [1]
 - Tested if mass-specific power output limited climbing ability in two species of geckos under mass specific loads
 - Increased loads did not decrease speed
 - Good basis for how to set up our experiment
- Attempted to establish a method for determining the max load capacity of horses through gait analysis
- Recorded acceleration when walking and trotting
- No significant difference in vertical acceleration when walking and trotting
- Provided framework for analysis of animal gait pattern
Testing Objectives

- Track gait patterns of 3 species of animals
 - Sprague-Dawley rats \((\text{Rattus norvegicus})\)
 - Dogs (Beagles) \((\text{Canis lupus familiaris})\)
 - Domestic sheep \((\text{Ovis aries})\)

- Test at 3 different load capacities
 - 10\%, 20\%, and 30\% of body weight

- Test at 3 Different Speeds
 - Walk, trot, and gallop
Materials

Animal Models
- 9 total adult animal models
 - 3 Sprague-Dawley Rats
 - 3 Dogs (Beagle)
 - 3 Domestic Sheep

Equipment
- Animal vests
- Weights
- Force Sensors (Tekscan)
- Oqus 7+ Series Motion Capture (Qualysis)
Gait Test Procedure

1. Animals initially cross wearing unloaded vest as control and training.

2. After acclimation, a load is attached to the animal’s vest, and it is prompted to travel across the force sensors. Trials are repeated at a load of 10%, 20%, and 30% of body weight, each at a walk, trot, and gallop.

3. Force data and motion capture video analyzed using inverse kinematics to quantify changes in animal gait.

Looking for differences in:

- Stride length
- Stride frequency
- Gait variables
- Hip/shoulder joint moment
- Knee/elbow joint moment
- Ankle/wrist joint moment
Anticipated Results

Increasing the load will ...

- Have no effect on speed
- Decrease stride length and increase stride frequency
- Result in more rigid joint angles
- Result in larger joint moments

Data able to be coded into machine learning algorithms
Cost Estimate

- Animal costs
 - Buying - $1750
 - Housing/Feeding - $1,000
- Materials
 - Force Sensors- $2,000
 - Vests - $250
 - Qualysis - $10,000

Total = ~ $15,000
Future Implications

- Use loaded gait data to improve quadrupedal gait algorithms
- Can be used to improve speed of locomotion and locomotion over rough terrain
- Especially applicable for autonomous algorithms
- Similar pursuits have been accomplished before in studies such as:
 - An evolutionary approach to gait learning for four-legged robots [3]
 - A simple rule for quadrupedal gait generation determined by leg loading feedback: a modeling study [4]
Research Applications

- Military
- Warehouse work
- Nuclear Cleanup
- Bomb disposal
References

1. Effects of loading and size on maximum power output and gait characteristics in geckos. Irschick, 2003
 D. J. Irschick, B. Vanhooydonck, A. Herrel, A. Andronescu

2. Method for estimating maximum permissible load weight for Japanese native horses using
 accelerometer-based gait analysis. Irschick, 2003
 D. J. Irschick, B. Vanhooydonck, A. Herrel, A. Andronescu

3. An evolutionary approach to gait learning for four-legged robots. Chernova, 2004
 S. Chernova, M. Veloso

4. A simple rule for quadrupedal gait generation determined by leg loading feedback: a modeling study.
 Fukuoka, 2015
 Y. Fukuoka, Y. Habu, T. Fukui

 H. Suzuki, H. Nishi, A. Aburadani, S. Inoue