Using Shape Memory Polymers to reduce knee moments and prevent ACL Injuries

Andrew Ten Eyck and Eddie Orzechowski
Pointers

- Remember the screen is much higher than the ground so there won’t be much opportunity to read off the slides
- Also the screen is far away so keep the font ~16 (like what this font is)
- Find clear pictures with little to no words on them

Let’s follow generally the same outline for the paper and we can prevent our own work
Anatomy and function[1]

- MCI, LCL: control turning in, out, and tibia movement
- ACL, PCL: stability in the coronal and sagittal plane
Background

- 80% of tears are due to non contact injuries[2].

- Risk factors[4][5]
 - Gender
 - Sport
 - Intercondylar notch
 - Hamstring strength
 - Prior ACL injury
Significance

- Total: 15,949,748 Injuries in Norwegian countries[2]
- Rehabilitation times 4-6 months[3].
- Potentially career ending injury
Areas of focus

- Factors in the tear [6][7]
 - Hamstring strength
 - Hip position upon landing
 - Foot and ankle position upon landing
 - Knee position upon landing
 - Movement direction
 - Weight distribution

https://www.youtube.com/watch?v=X8PJU4UzEbK
Conception

- Requirements:
 - Comfortable
 - Ease of movement [8]
 - Durability
 - Entire Leg segment
 - Feedback mechanism
 - Force Generation
Proposed Research

- Development of a full-body singlet
 - Improve hamstring contraction
 - Increase hip abductor strength
 - Improve hip flexion
 - Promote neutral knee alignment
 - Facilitate a toe-first landing
 - Help maintain a high range of ankle angles
Timetable

- Phase one: ~ 2 years
 - Research and development of prototype
- Phase two: ~ 2 years
 - Experimental Validation
- Phase three: ~ 1 year
 - Finalize design and bring singlet to market
Research Significance

- Provides improved compression garment to prevent ACL injury
- Investigates a randomized population’s risk of ACL injury
- Links data obtained from the suit to training programs
Conclusion

- Use Shape Memory Polymers embedded in a Singlet
- Integrate a Feedback control system
- Comfortable design similar to existing equipment
Questions?

● Cost?
 ○ Chip:~$50, material:~$300, material for actual clothes: $80

● Why not do training program?
 ○ No direct link of data between ACL Injuries and training programs

● Possibly damaging the system?
 ○ Smart placement on the body
References

