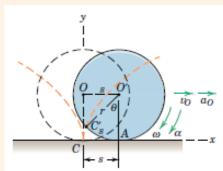
Sample Problem 5/4

A wheel of radius r rolls on a flat surface without slipping. Determine the angular motion of the wheel in terms of the linear motion of its center O. Also determine the acceleration of a point on the rim of the wheel as the point comes into contact with the surface on which the wheel rolls.

Solution. The figure shows the wheel rolling to the right from the dashed to the full position without slipping. The linear displacement of the center O is s. which is also the arc length C'A along the rim on which the wheel rolls. The radial line CO rotates to the new position C'O' through the angle θ , where θ is measured from the vertical direction. If the wheel does not slip, the arc C'A must equal the distance s. Thus, the displacement relationship and its two time derivatives give



$$v_O = r\omega$$
 Ans. $a_O = r\alpha$

where $v_O = \dot{s}$, $a_O = \dot{v}_O = \ddot{s}$, $\omega = \dot{\theta}$, and $\alpha = \dot{\omega} = \ddot{\theta}$. The angle θ , of course, must be in radians. The acceleration a_0 will be directed in the sense opposite to that of v_O if the wheel is slowing down. In this event, the angular acceleration α will have the sense opposite to that of ω .

The origin of fixed coordinates is taken arbitrarily but conveniently at the point of contact between C on the rim of the wheel and the ground. When point C has moved along its cycloidal path to C', its new coordinates and their time derivatives become

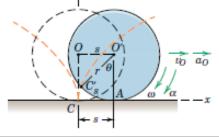
$$\begin{split} x &= s - r \sin \theta = r(\theta - \sin \theta) & y &= r - r \cos \theta = r(1 - \cos \theta) \\ \dot{x} &= r\dot{\theta} (1 - \cos \theta) = v_O (1 - \cos \theta) & \dot{y} &= r\dot{\theta} \sin \theta = v_O \sin \theta \\ \ddot{x} &= \dot{v}_O (1 - \cos \theta) + v_O \dot{\theta} \sin \theta & \ddot{y} &= \dot{v}_O \sin \theta + v_O \dot{\theta} \cos \theta \\ &= a_O (1 - \cos \theta) + r\omega^2 \sin \theta & = a_O \sin \theta + r\omega^2 \cos \theta \end{split}$$

For the desired instant of contact, $\theta = 0$ and

$$\ddot{x} = 0$$
 and $\ddot{y} = r\omega^2$ Ans.

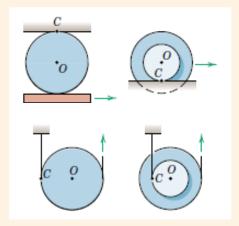
Thus, the acceleration of the point C on the rim at the instant of contact with the ground depends only on r and ω and is directed toward the center of the wheel. If desired, the velocity and acceleration of C at any position θ may be obtained by writing the expressions $\mathbf{v} = \dot{x}\mathbf{1} + \dot{y}\mathbf{j}$ and $\mathbf{a} = \ddot{x}\mathbf{1} + \ddot{y}\mathbf{j}$.

Application of the kinematic relationships for a wheel which rolls without slipping should be recognized for various configurations of rolling wheels such as those illustrated on the right. If a wheel slips as it rolls, the foregoing relations are no longer valid.



Helpful Hints

 These three relations are not entirely unfamiliar at this point, and their application to the rolling wheel should be mastered thoroughly.



(2) Clearly, when θ = 0, the point of contact has zero velocity so that $\dot{x} =$ $\dot{y} = 0$. The acceleration of the contact point on the wheel will also be obtained by the principles of relative motion in Art. 5/6.