Question of the Day

The **velocity** of the cart is 4 ft/s to the right.

Determine the **angular speed** N (in rpm's) of the wheel so that **point** A on the top of the rim has a **velocity** equal to **zero**.

 $\rightarrow v_C = 4 \text{ ft/sec}$

ME 231: Dynamics

5/60
$$V_A = V_O + V_{A/O}$$
 where $V_{A/O} = \overline{AO} \omega = \frac{10}{12} \omega \frac{ft}{sec}$
(a) $V_A = 4 V_O = 4$ $\omega = \frac{8}{10/12} = 9.6 \frac{rad}{sec}$, $N = 9.6 \frac{60}{2\pi} = 91.7 \frac{rev}{min}$ CCW

(b)
$$\frac{U_0=4}{\sum_{A|0}=4} U_{=0}, \ \omega = \frac{4}{10/12} = 4.8 \frac{rad}{sec}, \ N = 45.8 \frac{rev}{min}$$

$$CCW$$

(c)
$$\frac{U_0=4}{V_A=8} \frac{V_A/o=4}{5ec} = \frac{4}{10/12} = 4.8 \frac{rod}{sec}$$
, $N=45.8 \frac{rev}{min} CW$