Solution of Relative-Velocity Equation: Case \#1

 Scalar-Geometric$$
v_{A / O}=r_{0} \omega=r_{0}\left(\frac{v_{O}}{r}\right)=2 \mathrm{~m} / \mathrm{s}
$$

$$
v_{A}^{2}=3^{2}+2^{2}+2(3)(2) \cos 60^{\circ}
$$

$$
v_{A}=4.36 \mathrm{~m} / \mathrm{s}
$$

ME 231: Dynamics

Sample Problem 5/7

The wheel of radius $r=300 \mathrm{~mm}$ rolls to the right without slipping and has a velocity $v_{O}=3 \mathrm{~m} / \mathrm{s}$ of its center O. Calculate the velocity of point A on the wheel for the instant represented.

Solutlon I (Scalar-Geometric). The center O is chosen as the reference point for the relative-velocity equation since its motion is given. We therefore write

$$
\mathbf{v}_{A}=\mathbf{v}_{O}+\mathbf{v}_{A / O}
$$

where the relative-velocity term is observed from the translating axes $x-y$ attached to O. The angular velocity of $A O$ is the same as that of the wheel which, from Sample Problem 5/4, is $\omega=v_{o} / r=3 / 0.3=10 \mathrm{rad} / \mathrm{s}$. Thus, from Eq. $5 / 5$ we have
$\left[v_{A O O}=r_{0} \dot{\theta}\right] \quad v_{A / O}=0.2(10)=2 \mathrm{~m} / \mathrm{s}$
which is normal to $A O$ as shown. The vector sum \mathbf{v}_{A} is shown on the diagram and may be calculated from the law of cosines. Thus,

$$
v_{A}^{2}=3^{2}+2^{2}+2(3)(2) \cos 60^{\circ}=19(\mathrm{~m} / \mathrm{s})^{2} \quad v_{A}=4.36 \mathrm{~m} / \mathrm{s}
$$

Ans.
The contact point C momentarily has zero velocity and can be used alternatively as the reference point, in which case, the relative-velocity equation becomes $\mathbf{v}_{A}=\mathbf{v}_{C}+\mathbf{v}_{A / C}=\mathbf{v}_{A / C}$ where

$$
v_{A / C}=\overline{A C} \omega=\frac{\overline{A C}}{\overline{O C}} v_{O}=\frac{0.436}{0.300}(3)=4.36 \mathrm{~m} / \mathrm{s} \quad v_{A}=v_{A C C}=4.36 \mathrm{~m} / \mathrm{s}
$$

The distance $\overline{A C}=436 \mathrm{~mm}$ is calculated separately. We see that \mathbf{v}_{A} is normal to $A C$ since A is momentarily rotating about point C.

Helpful Hints

(1) Be sure to visualize $v_{A / O}$ as the velocity which A appears to have in its circular motion relative to O.
(2) The vectors may also be laid off to scale graphically and the magnitude and direction of v_{A} measured directly from the diagram.
(3) The velocity of any point on the wheel is easily determined by using the contact point C as the reference point. You should construct the velocity vectors for a number of points on the wheel for practice.

