## Polar $(r-\theta)$ Coordinates: Exercise


$\mathbf{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \mathbf{e}_{\mathbf{r}}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \mathbf{e}_{\theta}$
Tube $A$ rotates about the vertical
$O$-axis with constant angular velocity $\omega$ and contains a small cylinder $B$ of mass $m$ whose radial position is controlled by a cord passing through the tube and wound around a drum of radius $b$.

Determine the tension $T$ in the cord and $\theta$ component of force $F_{\theta}$ if the drum has a constant angular rate of rotation of $\omega_{0}$ as shown.

```
ME 231: Dynamics
```


## Sample Problem 3/10

Tube $A$ rotates about the vertical $O$-axis with a constant angular rate $\dot{\theta}=\omega$ and contains a small cylindrical plug $B$ of mass $m$ whose radial position is controlled by the cord which passes freely through the tube and shaft and is wound around the drum of radius $b$. Determine the tension $T$ in the cord and the horizontal component $F_{\theta}$ of force exerted by the tube on the plug if the constant angular rate of rotation of the drum is $\omega_{0}$ first in the direction for case $(a)$ and second in the direction for case (b). Neglect friction.

Solution. With $r$ a variable, we use the polar-coordinate form of the equations of motion, Eqs. $3 / 8$. The free-body diagram of $B$ is shown in the horizontal plane and discloses only $T$ and $F_{\theta}$. The equations of motion are

$$
\begin{array}{lrl}
{\left[\Sigma F_{r}=m a_{r}\right]} & -T & =m\left(\ddot{r}-r \dot{\theta^{2}}\right) \\
{\left[\Sigma F_{\theta}=m a_{\theta}\right]} & F_{\theta} & =m(r \ddot{\theta}+2 \dot{r} \dot{\theta})
\end{array}
$$

Case (a). With $\dot{r}=+b \omega_{0}, \ddot{r}=0$, and $\ddot{\theta}=0$, the forces become

$$
T=m r \omega^{2} \quad F_{\theta}=2 m b \omega_{0} \omega
$$

Case (b). With $\dot{r}=-b \omega_{0}, \ddot{r}=0$, and $\ddot{\theta}=0$, the forces become

$$
T=m r \omega^{2} \quad F_{\theta}=-2 m b \omega_{0} \omega
$$

Ans.

## Helpful Hint

(1) The minus sign shows that $F_{\theta}$ is in the direction opposite to that shown on the free-body diagram.

