<u>Linear Impulse-Momentum:</u> Yet Another Exercise

A **2.4-kg** particle moves in the x-y plane and has the velocity shown at time t = 0. A

5 m/s

force $F = 2+3t^2/4$ Newton's is applied in the *y*-direction at t = 0.

Determine the **velocity** of the particle **4 seconds** after F is applied and specify the **angle** θ measured counter clockwise from the **x**-axis to the **direction** of the **velocity**.

ME 231: Dynamics

$$\frac{3/205}{52F_{y} dt = \Delta G_{y}:}$$

$$\int_{0}^{4} (2 + \frac{3t^{2}}{4}) dt = 2.4(\sigma_{y} - [-\frac{3}{5}5])$$

$$2t + \frac{t^{3}}{4} \Big|_{0}^{4} = 2.4(\sigma_{y} + 3), \quad \sigma_{y} = 7 \text{ m/s}$$

$$52F_{x} dt = \Delta G_{x}: \quad O = 2.4(\sigma_{x} - \frac{4}{5}5), \quad \sigma_{x} = 4 \text{ m/s constant}$$

$$\sigma = \sqrt{4^{2} + 7^{2}} = 8.06 \text{ m/s}, \quad \theta = \tan^{-1}\frac{7}{4} = 60.3^{\circ}$$

$$\sigma_{y}$$