Sample Problem 2/1

The position coordinate of a particle which is confined to move along a straight line is given by $s=2 t^{3}-24 t+6$, where s is measured in meters from a convenient origin and t is in seconds. Determine (a) the time required for the particle to reach a velocity of $72 \mathrm{~m} / \mathrm{s}$ from its initial condition at $t=0$, (b) the acceleration of the particle when $v=30 \mathrm{~m} / \mathrm{s}$, and (c) the net displacement of the particle during the interval from $t=1 \mathrm{~s}$ to $t=4 \mathrm{~s}$.

Solution. The velocity and acceleration are obtained by successive differentiation of s with respect to the time. Thus,
$[v=\dot{s}]$
$v=6 t^{2}-24 \mathrm{~m} / \mathrm{s}$
$[a=\dot{v}]$

$$
a=12 t \mathrm{~m} / \mathrm{s}^{2}
$$

(a) Substituting $v=72 \mathrm{~m} / \mathrm{s}$ into the expression for v gives us $72=6 t^{2}-24$, from which $t= \pm 4 \mathrm{~s}$. The negative root describes a mathematical solution for t before the initiation of motion, so this root is of no physical interest. Thus, the desired result is

$$
t=4 \mathrm{~s}
$$

Ans.
(b) Substituting $v=30 \mathrm{~m} / \mathrm{s}$ into the expression for v gives $30=6 t^{2}-24$, from which the positive root is $t=3 \mathrm{~s}$, and the corresponding acceleration is

$$
a=12(3)=36 \mathrm{~m} / \mathrm{s}^{2}
$$

Ans.
(c) The net displacement during the specified interval is

$$
\begin{aligned}
\Delta s & =s_{4}-s_{1} \quad \text { or } \\
\Delta s & =\left[2\left(4^{3}\right)-24(4)+6\right]-\left[2\left(1^{3}\right)-24(1)+6\right] \\
& =54 \mathrm{~m}
\end{aligned}
$$

Ans.
(2) which represents the net advancement of the particle along the s-axis from the position it occupied at $t=1 \mathrm{~s}$ to its position at $t=4 \mathrm{~s}$.

To help visualize the motion, the values of s, v, and a are plotted against the time t as shown. Because the area under the $v-t$ curve represents displacement, we see that the net displacement from $t=1 \mathrm{~s}$ to $t=4 \mathrm{~s}$ is the positive area Δs_{2-4} less the negative area Δs_{1-2}.

Helpful Hints

(1) Be alert to the proper choice of sign when taking a square root. When the situation calls for only one answer, the positive root is not always the one you may need.
(2) Note carefully the distinction between italic \& for the position coordinate and the vertical s for seconds.
(3) Note from the graphs that the values for v are the slopes (\dot{s}) of the $s-t$ curve and that the values for a are the slopes (\dot{v}) of the $v-t$ curve. Suggestion: Integrate $v d t$ for each of the two intervals and check the answer for Δs. Show that the total distance traveled during the interval $t-1$ s to $t=4 \mathrm{~s}$ is 74 m .

