
Impulse-Momentum for Rigid Bodies: Exercise 2

The man A of $mass m_A$ drops with $velocity v_0$ onto the end of a light beam. The boy B is sent up with a $velocity v_B$.

Determine b in terms of L to maximize the v_B for a given ratio $n = m_B/m_A$.

$$V_B = V_O \frac{1}{\frac{L-b}{b} + n \frac{b}{L-b}}$$
 where $n = m_B/m_A$

$$\frac{dV_{B}}{db} = V_{0} \frac{-\left(\frac{L}{b^{2}} + n \frac{L - b - b(-1)}{(L - b)^{2}}\right)}{\left(\frac{L - b}{b} + n \frac{b}{L - b}\right)^{2}} = V_{0} \frac{L\left(\frac{1}{b^{2}} - \frac{n}{(L - b)^{2}}\right)}{\left(\frac{L - b}{b} + n \frac{b}{L - b}\right)^{2}} = 0$$

$$50 \frac{1}{b^2} = \frac{n}{(L-b)^2}$$
, $b = \frac{L}{1 \pm \sqrt{n}}$ (+ sign gives positive v_B)

Thus
$$b = \frac{L}{1 + \sqrt{n}}$$
 which gives $v_B = \frac{v_0}{2\sqrt{n}}$