Work-Energy: Exercise 2

The **50-kg** flywheel has a **radius of gyration** of **0.4 m** about its shaft axis and is subjected to the **torque M** = $2(1-e^{-0.1\theta})$ **Nm**, where θ is in radians.

Determine its **angular velocity** after **5 revolutions** if it starts

rest when $\theta = 0$.

ME 231: Dynamics

$$\begin{array}{lll}
G/32 & T_{1} + U_{1-2} = T_{2} \\
T_{1} & = 0 \\
U_{1-2} & = \int_{1}^{\infty} M d\theta = \int_{0}^{\infty} Z(1 - e^{-0.1\theta}) d\theta \\
& = \left(Z\theta + 20 e^{-0.1\theta} \right) \Big|_{0}^{5(2\pi)} \\
& = 2(5)(2\pi) + 20 e^{-0.1}(5)(2\pi) \\
& = 43.7 \text{ J.}
\end{array}$$

$$T_{Z} & = \frac{1}{2} I \omega^{2} = \frac{1}{2} (50)(0.4)^{2} \omega^{2} = 4\omega^{2}$$
So $0 + 43.7 = 4\omega^{2}$ $\omega = 3.31 \text{ rad/s}$