X-Y Vector Representation: Exercise

A particle moving in two-dimensions has a position vector (\mathbf{r}) as a function of time (\boldsymbol{t}) with coordinates given by

$$
x(t)=t^{2}-4 t+20, y(t)=3 \sin (2 t)
$$

where \mathbf{r} is measured in inches and \boldsymbol{t} is in seconds.

Determine the magnitude of the velocity (v) and the acceleration (a) at time $t=3 \mathrm{~s}$.

$$
\begin{aligned}
& 2 / 63 \\
& x=t^{2}-4 t+20 \\
& \dot{x}=2 t-4 \\
& \ddot{x}=2
\end{aligned}
$$

$$
y=3 \sin 2 t
$$

$$
\dot{y}=6 \cos 2 t
$$

$$
\ddot{y}=-12 \sin 2 t
$$

At time $t=3 \mathrm{sec}$:

$$
\begin{array}{ll}
\dot{x}=2 \mathrm{in} . / \mathrm{sec} & \dot{y}=5.76 \mathrm{in} . / \mathrm{sec} \\
\ddot{x}=2 \mathrm{in} . / \mathrm{sec}^{2} & \ddot{y}=3.35 \mathrm{in} \cdot / \mathrm{sec}^{2} \\
v=\sqrt{\dot{x}^{2}+\dot{y}^{2}}=\sqrt{2^{2}+5.76^{2}}=\frac{6.10 \mathrm{in} . / \mathrm{sec}}{3.90 \mathrm{in} \cdot / \mathrm{sec}^{2}} \\
a=\sqrt{\ddot{x}^{2}+\ddot{y}^{2}}=\sqrt{z^{2}+3.35^{2}}=\underline{3.9} \\
\underline{v}=2 \underline{i}+5.76 j \mathrm{in} \cdot / \mathrm{sec}, \quad a=2 \underline{i}+3.35 \mathrm{jin} / \mathrm{sec}^{2} \\
\theta & =\cos ^{-1} \frac{v \cdot \underline{a}}{v a}=\cos ^{-1}\left(\frac{2(2)+5.76(3.35)}{(6.10)(3.90)}\right) \\
& =11.67^{\circ}
\end{array}
$$

