Question of the Day

Sample Problem 2/13

Passengers in the jet transport A flying east at a speed of $800 \mathrm{~km} / \mathrm{h}$ observe a second jet plane B that passes under the transport in horizontal flight. Although the nose of B is pointed in the 45° northeast direction, plane B appears to the passengers in A to be moving away from the transport at the 60° angle as shown. Determine the true velocity of B.

Solution. The moving reference axes $x-y$ are attached to A, from which the relative observations are made. We write, therefore,

$$
\mathbf{v}_{B}=\mathbf{v}_{A}+\mathbf{v}_{B / A}
$$

Next we identify the knowns and unknowns. The velocity \mathbf{v}_{A} is given in both magnitude and direction. The 60° direction of $\mathbf{v}_{B M A}$, the velocity which B appears to have to the moving observers in A, is known, and the true velocity of B is in the 45° direction in which it is heading. The two remaining unknowns are the magni-
(I) Graph/cal. We start the vector sum at some point P by drawing \mathbf{v}_{A} to a convenient scale and then construct a line through the tip of \mathbf{v}_{A} with the known direction of $\mathbf{v}_{B / A}$. The known direction of \mathbf{v}_{B} is then drawn through P, and the intersection C yields the unique solution enabling us to complete the vector triangle and scale off the unknown magnitudes, which are found to be

$$
v_{B / A}=586 \mathrm{~km} / \mathrm{h} \quad \text { and } \quad v_{B}=717 \mathrm{~km} / \mathrm{h}
$$

Ans.
(II) TrIgonometric. A sketch of the vector triangle is made to reveal the trigonometry, which gives

$$
\begin{equation*}
\frac{v_{B}}{\sin 60^{\circ}}=\frac{v_{A}}{\sin 75^{\circ}} \quad v_{B}=800 \frac{\sin 60^{\circ}}{\sin 75^{\circ}}=717 \mathrm{~km} / \mathrm{h} \tag{4}
\end{equation*}
$$

(III) Vector Algebra. Using unit vectors \mathbf{i} and \mathbf{j}, we express the velocities in vector form as

$$
\begin{gathered}
\mathbf{v}_{A}=800 \mathbf{k m} / \mathrm{h} \quad \mathbf{v}_{B}=\left(v_{B} \cos 45^{\circ}\right) \mathbf{1}+\left(v_{B} \sin 45^{\circ}\right) \mathbf{j} \\
\mathbf{v}_{B / A}=\left(v_{B / A} \cos 60^{\circ}\right)(-\mathbf{1})+\left(v_{B / A} \sin 60^{\circ}\right) \mathbf{j}
\end{gathered}
$$

Substituting these relations into the relative-velocity equation and solving separately for the \mathbf{i} and \mathbf{j} terms give

$$
\begin{array}{ll}
(1 \text {-terms) } & v_{B} \cos 45^{\circ}=800-v_{B / A} \cos 60^{\circ} \\
(\mathbf{j} \text {-terms) } & v_{B} \sin 45^{\circ}=v_{B / A} \sin 60^{\circ}
\end{array}
$$

Solving simultaneously yields the unknown velocity magnitudes

$$
v_{B / A}=586 \mathrm{~km} / \mathrm{h} \quad \text { and } \quad v_{B}=717 \mathrm{~km} / \mathrm{h}
$$

Ans.
It is worth noting the solution of this problem from the viewpoint of an observer in B. With reference axes attached to B, we would write $\mathbf{v}_{A}=\mathbf{v}_{B}+\mathbf{v}_{A / B}$. The apparent velocity of A as observed by B is then $\mathbf{v}_{A / B}$, which is the negative of $\mathbf{v}_{B / A}$ -

Helpful Hints

We treat each airplane as a particle.
(2) We assume no side slip due to cross wind.
(3) Students should become familiar with all three solutions.

(4) We must be prepared to recognize the appropriate trigonometric relation, which here is the law of sines.
(5) We can see that the graphical or trigonometric solution is shorter than the vector algebra solution in this particular problem.

