

Absolute Motion
Lecture 10

## Question of the Day



The cable reel rolls without slipping on the horizontal surface. Point $A$ on the cable has a velocity $v_{A}=0.8 \mathrm{~m} / \mathrm{s}$ to the right.

Compute the velocity of the center $\boldsymbol{O}$ and the angular velocity $\omega$ of the reel.

## Outline for Today

- Question of the day
- Absolute-motion analysis
- Geometric relations
- Maintaining consistent sense
- Absolute motion: exercise(s)
- Answer your questions!


## Absolute-Motion Analysis

- The method relates the position of a point, $A$, on a rigid body to the angular position, $\theta$, of a line contained in the body
- The velocity and acceleration of point $A$ are obtained in terms of the angular velocity, $\omega$, and
 angular acceleration, $\alpha$, of the rigid body


## Recall: Constrained Motion of Connected Particles

- Application of absolute-motion analysis
- Successive differentiation of cable length
- Geometric relations are simple (i.e., linear variables only)

Constraint Equations

$$
\begin{array}{ll}
L=x+\frac{\pi}{2} r_{2}+2 y+\pi r_{1}+b \\
0=\dot{x}+2 \dot{y} & 0=v_{A}+2 v_{B} \\
0=\ddot{x}+2 \ddot{y} & 0=a_{A}+2 a_{B}
\end{array}
$$

## Geometric Relations

Rigid-body motion includes both linear and angular variables

Linear

- Position
- Velocity
- Acceleration

Angular

- Position
- Velocity
- Acceleration


## Maintaining Consistent Sense

## A key concept in dynamics!

- Angular position of moving line is specified by counterclockwise angle ( $\theta$ )
- Angular velocity ( $\omega$ )
 is positive in the same counter-clockwise sense

$$
\omega=\frac{d \theta}{d t}=\dot{\theta}
$$

- Angular acceleration
$(\alpha)$ is positive in the same counterclockwise sense

$$
\alpha=\frac{d \omega}{d t}=\dot{\omega}=\frac{d^{2} \theta}{d t^{2}}=\ddot{\theta}
$$

## Outline for Today

- Question of the day
- Absolute-motion analysis
- Geometric relations
- Maintaining consistent sense
- Absolute motion: exercise(s)
- Answer your questions!


## Absolute Motion: Exercise

A wheel of radius $r$ rolls without slipping.


Determine the wheel's angular motion in terms of the linear motion of its center $\boldsymbol{O}$.

Also determine the acceleration of point $C$ on the rim of the wheel as it contacts the ground.

## Absolute Motion: Another Exercise



## Slider A moves horizontally with a constant speed $\nu$.

Determine the angular velocity of bar $\boldsymbol{A B}$ in terms of the linear position of displacement $\boldsymbol{x}_{\boldsymbol{A}}$.

## Absolute Motion: Yet Another Exercise

Derive an expression for the upward velocity of the car hoist in terms of $\theta$.

The piston rod of the hydraulic cylinder is extending at the rate $\dot{s}$.


## Outline for Today

- Question of the day
- Absolute-motion analysis
- Geometric relations
- Maintaining consistent sense
- Absolute motion: exercise(s)
- Answer your questions!


## Homework Survey



## Homework Survey



## For Next Time...

- Begin Homework \#4 due next Thursday (9/20)
- Read Chapter 6, Section 6.2

