Relative Velocity

Lecture 11

ME 231: Dynamics

Question of the Day

The velocity of the cart is $4 \mathrm{ft} / \mathrm{s}$ to the right.

Determine the angular speed N (in rpm's) of the wheel so that point A on the top of the rim has a velocity equal to zero.

Outline for Today

- Question of the day
- Relative velocity due to rotation
- Interpretation of $\mathbf{v}_{\mathrm{A}}=\mathbf{v}_{\mathrm{B}}+\mathbf{v}_{\mathrm{A} / \mathrm{B}}$
- Solution of relative-velocity equation
- Answer your questions!

Recall: Relative Motion

- Absolute position of \boldsymbol{B} is defined in an inertial coordinate system $X-\boldsymbol{Y}$
- Attach a set of translating (non-rotating) axes $x-y$ to particle \boldsymbol{B} and define the position of \boldsymbol{A}
- Define position of "A relative to $B^{\prime \prime}(" A / B$ ") in $x-y$

Relative Velocity Due to Rotation

- Movement in two parts
- First, body translates
$\Delta \mathrm{r}_{B}$ to parallel position
- Second, body

$$
\Delta \mathbf{r}_{A}=\Delta \mathbf{r}_{B}+\Delta \mathbf{r}_{A / B}
$$

From translating (non-rotating) axes $x^{\prime}-y^{\prime}$ attached to point B^{\prime}, the remaining motion is a simple rotation about B^{\prime} giving $\Delta \mathrm{r}_{A / B}$

Relative Velocity Due to Rotation

Relative velocity

$$
\begin{aligned}
& \text { as a scalar } \\
& \begin{aligned}
v_{A / B} & =\lim _{\Delta t \rightarrow 0} \frac{\left|\Delta \mathbf{r}_{A / B}\right|}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{r \Delta \theta}{\Delta t} \\
& =r \omega
\end{aligned} \\
& \\
& \text {...as a vector } \quad \mathbf{v}_{A}=\mathbf{v}_{B}+\mathbf{v}_{A / B} \text { Dividing by } \Delta t
\end{aligned}
$$

$$
\mathbf{v}_{A / B}=\boldsymbol{\omega} \times \mathbf{r}
$$

Interpretation of Relative-Velocity Equation

ME 231: Dynamics

Outline for Today

- Question of the day
- Relative velocity due to rotation
- Interpretation of $\mathbf{v}_{\mathrm{A}}=\mathbf{v}_{\mathrm{B}}+\mathbf{v}_{\mathrm{A} / \mathrm{B}}$
- Solution of relative-velocity equation
- Answer your questions!

Solution of Relative-Velocity Equation: Case \#1

$$
\begin{aligned}
& \text { Scalar-Geometric } \quad v_{A / O}=r_{O} \omega=r_{O}\left(\frac{v_{O}}{r}\right)=2 \mathrm{~m} / \mathrm{s} \\
& v_{A}^{2}=v_{A / O}^{2}+v_{O}^{2}-2\left(v_{A / O}\right)\left(v_{O}\right) \cos 120^{\circ} \\
& v_{A}^{2}=2^{2}+3^{2}-2(2)(3) \cos 120^{\circ} \\
& v_{A}=4.36 \mathrm{~m} / \mathrm{s} \quad
\end{aligned}
$$

Solution of Relative-Velocity Equation: Case \#2

Vector

$$
\begin{aligned}
& \mathbf{v}_{A}=\mathbf{v}_{O}+\mathbf{v}_{A / O}=\mathbf{v}_{O}+\boldsymbol{\omega} \times \mathbf{r}_{0} \\
& \mathbf{v}_{A}=3 \mathbf{i}+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 0 & -10 \\
-0.17 & 0.1 & 0
\end{array}\right|=3 \mathbf{i}+1.7 \mathbf{j}+\mathbf{i}=4 \mathbf{i}+1.7 \mathbf{j} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\left|\mathbf{v}_{A}\right|=4.36 \mathrm{~m} / \mathrm{s}
$$

$$
\mathbf{v}_{A}=\mathbf{v}_{O}+\mathbf{v}_{A / O}
$$

Relative Velocity: Exercise

A mechanic "walks" a two-tire unit that rolls without slipping at constant speed v_{v} The radius of both tires is r.

Determine the velocities of points A, B, C, and D.

Outline for Today

- Question of the day
- Relative velocity due to rotation
- Interpretation of $\mathbf{v}_{\mathrm{A}}=\mathbf{v}_{\mathrm{B}}+\mathbf{v}_{\mathrm{A} / \mathrm{B}}$
- Solution of relative-velocity equation
- Answer your questions!

For Next Time...

- Complete Homework \#4 due on Thursday (9/20)
- Read Chapter 6, Section 6.2

