

Instantaneous Center of Zero Velocity Lecture 12

ME 231: Dynamics

Question of the Day

A wheel of radius rolls without slipping and has velocity $0.8 \mathrm{in} / \mathrm{s}$ and angular velocity $1.0 \mathrm{rad} / \mathrm{s}$. What point(s) on the wheel has zero velocity?

A wheel of radius r rolls and slips on ice and has the same velocity $0.8 \mathrm{in} / \mathrm{s}$ but an angular velocity 2.0 rad/s. What point(s) on the wheel has zero velocity?

Admin: Course Feedback

Outline for Today

- Question of the day
- Instantaneous axis and center
- Locating the instantaneous center
- Motion of the instantaneous center
- Answer your questions!

Instantaneous Axis and Center of Zero Velocity

- Reference point \boldsymbol{O} momentarily has zero velocity
- Pure rotation occurs about an instantaneous axis normal to the plane of motion
- Intersection of this axis with the plane of motion is the instantaneous center

Locating the Instantaneous Center: Case \#1

- Directions of absolute velocities for \boldsymbol{A} and B are known (and not paralle/)
- Point A has circular motion about some point on the line perpendicular to velocity \mathbf{v}_{A}

- Point B has a similar motion
- Point C is the instantaneous center of zero velocity (may lie on or off the body)

$$
\omega=\frac{v_{A}}{r_{A}}=\frac{v_{B}}{r_{B}}
$$

Locating the Instantaneous Center: Case \#2

- Directions of absolute velocities for A and B are known AND parallel
- The line joining the points is perpendicular to velocity \mathbf{v}_{A} and \mathbf{v}_{B}
- Instantaneous center found by direct proportions

Instantaneous Center: Exercise

End A of the link has a downward velocity $\mathbf{v}_{A}=2 \mathrm{~m} / \mathrm{s}$. and $\theta=30^{\circ}$.

Determine the location of the instantaneous center, the angular velocity ω of $A B$, and the velocity of the link's midpoint G.

Motion of the Instantaneous Center

- As a body changes position the instantaneous center changes position
- Locus of instantaneous center positions in space is the space centrode
Space centrode /
- Locus of instantaneous center positions on the body is the body centrode

Instantaneous Center: Another Exercise

The rear wheel of a car moving to the right has a diameter of $26^{\prime \prime}$ and an angular speed N of 200 rev/min on an icy road. The instantaneous center of zero velocity is 4 " above the point of contact with the road.

Determine the velocity v of the car and the slipping velocity v_{s} of the tire on the ice.

Outline for Today

- Question of the day
- Instantaneous axis and center
- Locating the instantaneous center
- Motion of the instantaneous center
- Answer your questions!

For Next Time...

- Begin Homework \#5 due next week (9/26)
- Read Chapter 6, Section 6.3

