

Relative Acceleration Lecture 13

ME 231: Dynamics

Question of the Day

The acceleration of the cart is $4 \mathrm{ft} / \mathrm{s}^{2}$ to the right.

Determine the angular acceleration of the wheel so that point A on the top of the rim has a horizontal component of acceleration equal to zero.

Outline for Today

- Question of the day
- Relative acceleration due to rotation
- Interpretation of $\mathbf{a}_{\mathrm{A}}=\mathbf{a}_{\mathrm{B}}+\mathbf{a}_{\mathrm{A} / \mathrm{B}}$
- Solution of relative-acceleration eq.
- Answer your questions!
- What about next week?

Recall: Relative Motion

- Absolute position of \boldsymbol{B} is defined in an inertial coordinate system $X-\boldsymbol{Y}$
- Attach a set of translating (non-rotating) axes $x-y$ to particle \boldsymbol{B} and define the position of \boldsymbol{A}
- Define position of "A relative to $B^{\prime \prime}(" A / B$ ") in $x-y$

Relative Acceleration Due to Rotation

From translating (non-rotating)

$$
\mathbf{a}_{A}=\mathbf{a}_{B}+\mathbf{a}_{A / B}
$$

$$
\mathbf{v}_{A / B}=\dot{\mathbf{r}}=\boldsymbol{\omega} \times \mathbf{r}
$$ axes $x-y$ attached to point B, the acceleration is a simply due to circular motion about \boldsymbol{B}

$$
\mathbf{a}_{A / B}=\dot{\mathbf{v}}_{A / B}=\boldsymbol{\omega} \times \dot{\mathbf{r}}+\dot{\boldsymbol{\omega}} \times \mathbf{r} \quad \uparrow \alpha=\dot{\omega}
$$

$\mathbf{a}_{A / B}=\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \mathbf{r})+\boldsymbol{\alpha} \times \mathbf{r}$

Interpretation of Relative-Acceleration Eq.

Translational Rotational portion portion

ME 231: Dynamics

Outline for Today

- Question of the day
- Relative acceleration due to rotation
- Interpretation of $\mathbf{a}_{\mathrm{A}}=\mathbf{a}_{\mathrm{B}}+\mathbf{a}_{\mathrm{A} / \mathrm{B}}$
- Solution of relative-acceleration eq.
- Answer your questions!
- What about next week?

Solution of Relative-Acceleration Eq.: Exercise

A truck has forward acceleration $\mathrm{a}=12 \mathrm{ft} / \mathrm{s}^{2}$ rolling without slipping its 24 " tires.

Solution of Relative-Acceleration Eq.: Exercise

Calculate the angular acceleration of the plate, where $\boldsymbol{O A}$ has a constant angular velocity $\omega_{O A}=4 \mathrm{rad} / \mathrm{s}$ and $\theta=60^{\circ}$ for both links.

Solution of Relative-Acceleration Eq.: Exercise

Link $O A$ has constant angular velocity $\omega=4$ rad/s.

Determine the angular acceleration $\alpha_{A B}$ of link $A B$ when $O A$ is parallel to the horizontal axis through \boldsymbol{B}.

Outline for Today

- Question of the day
- Relative acceleration due to rotation
- Interpretation of $\mathbf{a}_{\mathrm{A}}=\mathbf{a}_{\mathrm{B}}+\mathbf{a}_{\mathrm{A} / \mathrm{B}}$
- Solution of relative-acceleration eq.
- Answer your questions!
- What about next week?

What about next week?

Lecture Schedule
 ME 231 ~ Dynamics

Month		Monday		Wednesday		Friday
August	13		15		17	
	20		22	Overview \& Intro. $1.1-1.3$	24	$\begin{aligned} & \text { Rectilin. Motion } \\ & 2.1-2.2 \end{aligned}$
	27	$\begin{aligned} & \text { Curvilin. Motion } \\ & 2.3-2.4 \end{aligned}$	29	Normal, Tangential 2.5	31	$\begin{aligned} & \text { Polar } \\ & 2.6 \end{aligned}$
September	3	Labor Day (no class)	5	Space Motion 2.8	7	Relative Motion 2.7
	10	Constrained Motion 2.7	12	Rotation 6.1	14	Absolute Motion 6.1
	17	Relative Velocity 6.2	19	Instant Center 6.2	21	Relative Accel. 6.3
	24	Relative Accel. 6.3	26	Rotating Axes 6.4	28	Rotating Axes 6.4
	1	Kinematics Review (Ch. 1, 2, \& 6)	3	$\begin{aligned} & \text { Exam } 1 \\ & (\text { Ch. } 1,2, \& 6) \end{aligned}$	5	Newton's 2nd Law 3.1

For Next Time...

- Continue Homework \#5 due next Wednesday (9/26)
- Read Chapter 6, Sections 6.3 and 6.4

