Motion Relative to Rotating Axes

Lecture 14

ME 231: Dynamics

Question of the Day

A wheel rotates 180° in the time it takes a ball dropped from the top of the wheel to reach the ground. What is the motion of the ball observed from a moving reference frame attached to the wheel?

Outline for Today

- Question of the day
- Vector representation: rotating axes
- Time derivatives of unit vectors
- Relative velocity
- Transformation of a time derivative
- Answer your questions!

Recall: Vector Representation

- Absolute position of \boldsymbol{B} is defined in an inertial coordinate system $X-\boldsymbol{Y}$
- Attach a set of translating (non-rotating) axes $x-y$ to particle \boldsymbol{B} and define the position of \boldsymbol{A}
- Define position of "A relative to $B^{\prime \prime}(" A / B$ ") in $x-y$

Vector Representation: Rotating Axes

- Absolute position of \boldsymbol{B} is defined in an inertial coordinate system $X-Y$
- Moving reference frame $x-y$ has its origin at B and rotates with angular velocity ω
- Define " \boldsymbol{A} relative to \boldsymbol{B}^{\prime} using unit vectors in $\boldsymbol{x}-\boldsymbol{y}$

Outline for Today

- Question of the day
- Vector representation: rotating axes
- Time derivatives of unit vectors
- Relative velocity
- Transformation of a time derivative
- Answer your questions!

Recall: Time Derivative

 of Unit Vectors

$\dot{\mathbf{e}}_{r}=\frac{d \mathbf{e}_{r}}{d t}=\left(\frac{d \theta}{d t}\right) \mathbf{e}_{\theta}=\dot{\theta} \mathbf{e}_{\theta}$
$\dot{\mathbf{e}}_{\theta}=\frac{d \mathbf{e}_{\theta}}{d t}=-\left(\frac{d \theta}{d t}\right) \mathbf{e}_{r}=-\dot{\theta} \mathbf{e}_{r}$

Time Derivatives of Unit Vectors

Infinitesimal change during dt

${ }^{y}$, $d \mathbf{j}=-d \theta \mathbf{i}$	$d \theta=\omega d t$
d	,
k	$d \mathbf{i}=$

Relative Velocity

$$
0
$$

$$
\dot{\mathbf{r}}_{A}=\dot{\mathbf{r}}_{B}+\frac{d}{d t}(x \mathbf{i}+y \mathbf{j})
$$

$$
\mathbf{r}_{A}=\mathbf{r}_{B}+(x \mathbf{i}+y \mathbf{j})
$$

$$
\mathbf{v}_{A}=\mathbf{v}_{B}+\boldsymbol{\omega} \times \mathbf{r}+\mathbf{v}_{r e l}
$$

$$
\dot{\mathbf{r}}_{A}=\dot{\mathbf{r}}_{B}+(x \dot{\mathbf{i}}+y \dot{\mathbf{j}})+(\dot{x} \dot{\mathbf{i}}+\dot{y} \mathbf{j})
$$

$$
\dot{\mathbf{r}}_{A}=\dot{\mathbf{r}}_{B}+(\boldsymbol{\omega} \times x \mathbf{i}+\boldsymbol{\omega} \times y \mathbf{j})+(\dot{x} \mathbf{i}+\dot{y} \mathbf{j}) \quad \dot{\mathbf{i}}=\boldsymbol{\omega} \times \mathbf{i} \quad \dot{\mathbf{j}}=\boldsymbol{\omega} \times \mathbf{j}
$$

$$
\dot{\mathbf{r}}_{A}=\dot{\mathbf{r}}_{B}+(\boldsymbol{\omega} \times(x \mathbf{i}+y \mathbf{j}))+(\ddot{x} \mathbf{i}+\ddot{y} \mathbf{j})
$$

Relative Velocity: Exercise

Aircraft \boldsymbol{B} has a constant speed of 480 mph along an arc with a radius of 9 miles. Aircraft A flies southwest at a constant speed of 360 mph .

Write the vector expression
 ($x-y$ attached to B) for the velocity of A relative to B.

Transformation of a Time Derivative

One of the most important concepts in dynamics!

$$
\left(\frac{d \mathbf{V}}{d t}\right)_{X Y}=\left(\dot{V}_{x} \mathbf{i}+\dot{V}_{y} \mathbf{j}\right)+\left(V_{x} \dot{\mathbf{i}}+V_{y} \dot{\mathbf{j}}\right)
$$

Recall: Time Derivative of a Vector

Magnitude changes, but direction constant

$$
\mathbf{r}(t)=2 t \mathbf{i}
$$

\mathbf{v} has

$$
\Delta \mathbf{r}=(4-2) \mathbf{i}=2 \mathbf{i}
$$

$$
\left|\frac{\Delta \mathbf{r}}{\Delta t}\right|=\left|\frac{(4-2) \mathbf{i}}{(2-1)}\right|=\left|\frac{2 \mathbf{i}}{1}\right|=2
$$

Transformation of a Time Derivative: Exercise

L - - - - X

$$
\mathbf{r}(t)=2 t \mathbf{i}
$$

$$
\begin{aligned}
\dot{\mathbf{H}}_{X Y} & =\mathbf{x}_{x y}+\boldsymbol{\omega} \times \mathbf{r} \\
& =2 \mathbf{i}+2 \mathbf{k} \times 2 t \mathbf{i} \\
& =2 \mathbf{i}+4 t \mathbf{j}
\end{aligned}
$$

Outline for Today

- Question of the day
- Vector representation: rotating axes
- Time derivatives of unit vectors
- Relative velocity
- Transformation of a time derivative
- Answer your questions!

For Next Time...

- Complete Homework \#5 due on Wednesday (9/26) at the beginning of class
- Read Chapter 6, Sections 6.3 and 6.4

