

Kinematics of Particles (Ch. 2) Review Lecture 16

ME 231: Dynamics

Question of the Day

What is the most important concept in Chapter 2? Time Derivative of a Vector

$$
\mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{v}}{\Delta t}
$$

- Δs is the scalar displacement along the path $\left(A \rightarrow A^{\prime}\right)$
- Maqnitude and direction of r are known at time t
- Δr is the vector (not scalar) change of position at $t+\Delta t$
- v has direction of Δr (tangent) and magnitude $|\Delta r / \Delta t|$

Outline for Today

- Question of the day
- Where are we in the course?
- Categories of motion
- Choice of coordinate systems
- Inertial versus moving coordinate systems
- Degrees of freedom
- Velocity and acceleration
- Exam 1 breakdown (kinematics of particles)

Where are we in the course?

Concept: What is dynamics?

Chapters 1, 2, 6

Relationship among position, velocity, and acceleration

Chapters 3, 5, 7, 8

Relationship among forces and acceleration

Where are we in the course?

Calculation: How do we use dynamics?

Newton's $2^{\text {nd }}$ Law

Force. A push or pull exerted on a body, characterized by:

- magnitude
- direction
- point of application
 respect to time

Outline for Today

- Question of the day
- Where are we in the course?
- Categories of motion
- Choice of coordinate systems
- Inertial versus moving coordinate systems
- Degrees of freedom
- Velocity and acceleration
- Exam 1 breakdown (kinematics of particles)

Categories of Motion

Geometry of a problem identifies the category.

- Lecture 2: rectilinear (1D)
- Lecture 3: curvilinear (2D)
- Lecture 6: space (3D)

Many of our motion problems involve curvilinear (2D), or plane motion.

Curvilinear (2D) Time Derivative: Exercise

A particle moving in two-dimensions has a position vector (r) as a function of time (t) with coordinates given by

$$
x(t)=t^{2}-4 t+20, \quad y(t)=3 \sin (2 t)
$$

where \mathbf{r} is measured in inches and \boldsymbol{t} is in seconds.

Determine the velocity (v) and the acceleration (a).

Outline for Today

- Question of the day
- Where are we in the course?
- Categories of motion
- Choice of coordinate systems
- Inertial versus moving coordinate systems
- Degrees of freedom
- Velocity and acceleration
- Exam 1 breakdown (kinematics of particles)

Choice of Coordinate Systems

Motion of a problem identifies the coordinate system.

- Rectangular ($\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$)
- Polar (r, θ, z)
- Spherical ($\boldsymbol{R}, \boldsymbol{\theta}, \phi)$
- Normal and Tangential (n, t)

Many of our motion problems involve 2D rectangular coordinates (x, y).

Inertial Versus Moving
 Coordinate Systems

Moving coordinate systems are measured with respect to an inertial coordinate system whose motion is negligible.

Inertial Versus Moving

 Coordinate Systems

- Absolute position of \boldsymbol{B} is defined in an inertial coordinate system $X-Y$
- Attach a set of translating (non-rotating) axes $x-y$ to particle \boldsymbol{B} and define the position of \boldsymbol{A}
- Define position of " A relative to $B^{\prime \prime}$ (" A / B ") in $x-y$

Vector Representation: Exercise

$$
\mathbf{r}_{A}=\mathbf{r}_{B}+\mathbf{r}_{A / B}
$$

$$
\mathbf{v}_{A}=\dot{\mathbf{r}}_{A}=\dot{\mathbf{r}}_{B}+\dot{\mathbf{r}}_{A / B}
$$

Train A travels with constant speed $v_{A}=120 \mathrm{~km} / \mathrm{h}$. Anticipating the need to stop, car \boldsymbol{B} decreases its speed of $90 \mathrm{~km} / \mathrm{h}$ at the rate of $3 \mathrm{~m} / \mathrm{s}^{2}$.

Determine the velocity and acceleration of the train relative to the car.

Outline for Today

- Question of the day
- Where are we in the course?
- Categories of motion
- Choice of coordinate systems
- Inertial versus moving coordinate systems
- Degrees of freedom
- Velocity and acceleration
- Exam 1 breakdown (kinematics of particles)

Degrees of Freedom

- Simple system of two interconnected particles
- With L, r_{2}, r_{1}, and b are constant
- Horizontal motion (x) of A is twice the vertical motion (y) of \boldsymbol{B}
- Only one variable (x or y) is needed to specify the positions of all parts of the system

Constraint Equations

$$
L=x+\frac{\pi}{2} r_{2}+2 y+\pi r_{1}+b
$$

$$
0=\dot{x}+2 \dot{y} \quad 0=v_{A}+2 v_{B}
$$

$$
0=\ddot{x}+2 \ddot{y} \quad 0=a_{A}+2 a_{B}
$$

Degrees of Freedom

Position of lower cylinder depends on two variables (y_{A} and y_{B})

Constraint Equations
$L_{A}=y_{A}+2 y_{D}+$ constant
$L_{B}=y_{B}+y_{C}+\left(y_{C}-y_{D}\right)+$ constant
$\begin{aligned} & 0=\dot{y}_{A}+2 \dot{y}_{D} \quad 0=\dot{y}_{B}+2 \dot{y}_{C}-\dot{y}_{D} \\ & 0=\ddot{y}_{A}+2 \ddot{y}_{D} \longrightarrow 0=\ddot{y}_{B}+2 \ddot{y}_{C}-\ddot{y}_{D}\end{aligned} 0=\dot{y}_{A}+2 \dot{y}_{B}+4 \dot{y}_{C}$
$0=\ddot{y}_{A}+2 \ddot{y}_{B}+4 \ddot{y}_{C}$

Degrees of Freedom: Exercise

How many degrees of freedom are necessary to specify the position of all parts of the system of interconnected particles?

Outline for Today

- Question of the day
- Where are we in the course?
- Categories of motion
- Choice of coordinate systems
- Inertial versus moving coordinate systems
- Degrees of freedom
- Velocity and acceleration
- Exam 1 breakdown (kinematics of particles)

Velocity and Acceleration

Lecture

2. Rectilinear
3. Curvilinear

$$
\mathbf{v}=\dot{\mathbf{r}}=\dot{x} \mathbf{i}+\dot{y} \mathbf{j}
$$

$$
\mathbf{a}=\dot{\mathbf{v}}=\ddot{\mathbf{r}}=\ddot{x} \mathbf{i}+\ddot{y} \mathbf{j}
$$

4. Normal \& Tangential

$$
\mathbf{v}=v \mathbf{e}_{\mathrm{t}}
$$

$$
\mathbf{a}=\frac{v^{2}}{\rho} \mathbf{e}_{\mathbf{n}}+\dot{v} \mathbf{e}_{\mathrm{t}}
$$

5. Polar

Coordinates

$$
\mathbf{v}=\dot{r} \mathbf{e}_{\mathbf{r}}+r \dot{\theta} \mathbf{e}_{\theta}
$$

$$
\mathbf{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \mathbf{e}_{\mathbf{r}}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \mathbf{e}_{\theta}
$$

7. Relative Motion

$$
\mathbf{v}_{A}=\dot{\mathbf{r}}_{A}=\dot{\mathbf{r}}_{B}+\dot{\mathbf{r}}_{A / B}
$$

$$
\mathbf{a}_{A}=\dot{\mathbf{v}}_{A}=\ddot{\mathbf{r}}_{A}=\ddot{\mathbf{r}}_{B}+\ddot{\mathbf{r}}_{A / B}
$$

Outline for Today

- Question of the day
- Where are we in the course?
- Categories of motion
- Choice of coordinate systems
- Inertial versus moving coordinate systems
- Degrees of freedom
- Velocity and acceleration
- Exam 1 breakdown (kinematics of particles)

Exam 1 Breakdown (kinematics of particles)

"Final" Course Grades (thru HW \#5 LAST YEAR)

25

"Final" Course Grades (thru HW \#5 THIS YEAR)

For Next Time...

- Complete Homework \#6 due on Tuesday (10/2)
- Review Chapter 6

