Newton's 2nd Law Lecture 18

3

ME 231: Dynamics

Question of the Day

Which defensive player generates the largest tackling force?

DB 5'-11" 203 lb (92 kg)LB 5'-10" 224 lb (101 kg)4.35 s 40-yd dash4.94 s 40-yd dash $a = 33.63 \text{ m/s}^2$ $a = 29.60 \text{ m/s}^2$

• Question of the day

- Kinetics: cause of motion
- Possible solutions to kinetics problems
- Force:acceleration ratio experiment
- Newton's 2nd Law for a particle
- Force and mass units
- Newton's 2nd Law for a system of particles
- Answer your questions!

Where are we in the course?

Concept: What is dynamics?

Kinetics: Cause of Motion

Concept: What is kinetics?

ki·net·ics (ka-'net-iks, kī-\
Definition of KINETICS
1 a : a branch of science that deals with the effects of forces upon the motions of material bodies or with changes in a physical or chemical system
b : the rate of change in such a system
2 : the mechanism by which a physical or chemical change is effected

Kinetics: Cause of Motion

Concept: What is kinetics?

In physics and engineering, kinetics is a term for the branch of classical mechanics that is concerned with the relationship between the motion of bodies and its causes, namely forces and torques.

Kinetics: Cause of Motion

Concept: What is kinetics?

Kinetics: Cause of Motion?

Concept: What is kinetics?

Possible Solutions to Kinetics Problems

- Direct application of *Newton's 2nd Law*
 force-mass-acceleration method
 Chapters 3 and 7
- Use of *impulse* and *momentum* methods
 Chapters 5 and 8
- Use of *work* and *energy* principles
 Chapter 4

Force: Acceleration Ratio Experiment

- Force:acceleration ratio is constant
- This constant is a measure of inertia of the particle (resistance to rate of change in velocity)
- Acceleration in the direction of force

Newton's 2nd Law for a Particle

- Customary to take k = 1
- Assumes a kinetic system of units where force, mass, and acceleration units are not independent

- Absolute kinetic system: force is dependent on the absolute value of mass (N = kg·m/s²)
- Gravitational kinetic system: mass is derived from force as determined from gravitational attraction (slug = lbf·s²/ft)

- **Force** of gravitational attraction (*W*) is **weight**
- **SI**: Mass *m* = 1 *kg*, weight *W* = 9.81 *N*, and acceleration *a* = 9.81 *m/s*²
- U.S. Customary: Mass m = 1 slug (or 1 lbm), weight W = 32.2 lbf (or 1 lbf), and acceleration a = 32.2 ft/s²

- Simple example: *accelerate* an object of *mass m* along the horizontal with a *force F*
- SI: Mass in kg, force in N (kg·m/s²), and acceleration in m/s²
- U.S. Customary: *Mass* in slug (lbf·s²/ft) or lbm, force in lbf, and acceleration in ft/s²

Newton's 2nd Law: Exercise

$\mathbf{F} = m\mathbf{a}$

During a brake test, a **1500** kg car with a speed of 100 km/h is stopped with a constant **deceleration** in a distance of 50 m.

Determine the braking *force F*.

<u>Newton's 2nd Law of a System of Particles</u>

Two **2-kg** balls are initially at rest when a vertical **force** F = 60 N is applied as shown.

Compute the vertical component a_y of the **acceleration** by considering the system as a whole.

- Question of the day
- Kinetics: cause of motion
- Possible solutions to kinetics problems
- Force:acceleration ratio experiment
- Newton's 2nd Law for a particle
- Force and mass units
- Newton's 2nd Law for a system of particles
- Answer your questions!

- Begin Homework #7 due 10/17
- Read Chapter 3, Section 3.1