Rectilinear (*One-Dimensional*) Motion

Lecture 2

ME 231: Dynamics

A particle moving along a straight line has a **position** (s) as a function of **time** (t) given by

$$s(t) = t^3 - 10t + 4$$

-s(t) <++++ + + + + + + + s(t) -10 -5 0 5 10 15 20 25 30

Determine the *velocity* and *acceleration* as a function of *time* (*t*).

Question of the day

- Kinematics: geometry of motion
- Possible coordinate systems
- Velocity and acceleration
- Graphical interpretations
- Integrating acceleration
- Answer your questions!

Kinematics: Geometry of Motion

Concept: What is kinematics?

Main Entry: ki·ne·mat·ics 🌒

```
Pronunciation: \,ki-nə-'ma-tiks also ,kī-\
```

```
Function: noun plural but singular in construction
```

Etymology: French cinématique, from Greek kinēmat-, kinēma motion, from kinein to move

Date: 1840

: a branch of dynamics that <u>deals</u> with aspects of motion apart from considerations of mass and force

— ki·ne·mat·ic 🌒 \-tik\ or ki·ne·mat·i·cal 🌗 \-ti-kəl\ adjective

— ki·ne·mat·i·cal·ly 🌒 \-ti-k(ə-)lē\ adverb

Kinematics: Geometry of Motion

Concept: What is kinematics?

Kinematics (from Greek KIVEIV, kinein, to move) is the branch of classical mechanics that describes the motion of objects without consideration of the causes leading to the motion.

Kinematics: Geometry of Motion

Concept: What is kinematics?

Kinematics: The description of motion (*position, velocity*, and *acceleration* relationships) without reference to the forces which cause the motion.

Possible Coordinate Systems

- Rectangular (x, y, z)
- Polar (r, θ, z)
- Spherical (R, θ , ϕ)
- Normal and Tangential (n, t)

- Question of the day
- Kinematics: geometry of motion
- Possible coordinate systems
- Velocity and acceleration
- Graphical interpretations
- Integrating acceleration
- Answer your questions!

Velocity and Acceleration

Velocity (v)

$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$$

Acceleration (a)

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d^2 s}{dt^2}$$

DE relating *S*, *V*, *a*

 $a = \frac{dv}{ds/v} = v\frac{dv}{ds}$

Velocity and Acceleration: Exercise

A particle moving along a straight line has a position (s) a function of time (t) given by

 $s(t) = 2t^3 - 24t + 6$

where s is measured in meters from a convenient origin and t is in seconds.

Determine (a) the time required for the particle to reach a *velocity* of 72 m/s, (b) the *acceleration* of the particle when it's velocity is 30 m/s, and (c) the net *position* change of the particle during the interval from 1s to 4s.

Graphical Interpretations

Clarifying relationships among position, velocity, and acceleration

- Velocity is slope of **S**-*t* curve
- Acceleration is slope of *v*-t curve
- Net *position* change (*ds*) is area $\int_{a}^{s_2} ds = \int_{a}^{t_2} v dt$ under *v-t* curve
- Net *velocity* change (dv) is area under *a-t* curve

- Question of the day
- Kinematics: geometry of motion
- Possible coordinate systems
- Velocity and acceleration
- Graphical interpretations
- Integrating acceleration
- Answer your questions!

Integrating Acceleration

Case #1: constant acceleration

Integrating Acceleration

• Case #2:
$$a = f(t)$$

 $a = \frac{dv}{dt}$ $\int_{v_0}^{v} dv = \int_{0}^{t} f(t) dt$ $v = v_0 + \int_{0}^{t} f(t) dt$
 $v = \frac{ds}{dt}$ $\int_{s_0}^{s} ds = \int_{0}^{t} v dt$ $s = s_0 + v_0 t + \int_{0}^{t} f(t) dt^2$

Integrating Acceleration: Exercise

Case #1: constant acceleration

A lunar module is **positioned** 5 m above the surface and has a downward **velocity** of 2 m/s when its engine stops.

Compute the impact **velocity** (**v**) of the module with the moon (hint: gravity) is 1/6 earth's gravity).

Integrating Acceleration: Exercise

Case #1: constant *acceleration*

A ball is thrown vertically with a **velocity** of 80 ft/s at the edge of a 200-ft cliff.

Calculate the *height* (*h*) the ball rises and the total *time* (*t*) to reach the bottom of the cliff.

Neglect air resistance and take **acceleration** as a = 32.2 ft/s².

Integrating Acceleration: Exercise Case #2: a = f(t)

Acceleration of a particle is given by a(t) = 2t - 10

where *a* is in meters per second squared and *t* is in seconds.

Determine the **velocity** and **position** as functions of time. The initial **position** is $s_0 = -4$ m at t = 0, and the initial **velocity** is $v_0 = 3$ m/s.

- Question of the day
- Kinematics: geometry of motion
- Possible coordinate systems
- Velocity and acceleration
- Graphical interpretations
- Integrating acceleration
- Answer your questions!

- Continue Homework #1 due next Wednesday (8/29)
- Read Chapter 2, Sections 2.3 and 2.4