

ME 231: Dynamics

## Question of the Day

A particle moving along a straight line has a position ( $s$ ) as a function of time ( $t$ ) given by

$$
s(t)=t^{3}-10 t+4
$$



Determine the velocity and acceleration as a function of time $(t)$.

## Outline for Today

- Question of the day
- Kinematics: geometry of motion
- Possible coordinate systems
- Velocity and acceleration
- Graphical interpretations
- Integrating acceleration
- Answer your questions!


## Kinematics: Geometry of Motion

## Concept: What is kinematics?

## Main Entry: ki-ne-mat-ics (4)

Pronunciation: \ki-nə-'ma-tiks also ,ki-\
Function: noun plural but singular in construction
Etymology: French cinématique, from Greek kinēmat-, kinēma motion,
from kinein to move
Date: 1840
: a branch of dynamics that deals with aspects of motion apart from considerations of mass and force
— ki•ne-mat-ic (b) -tik or ki-ne-mat-i-cal ab t-ti-kall adjective


## Kinematics: Geometry of Motion

## Concept: What is kinematics?

Kinematics (from Greek kiveiv, kinein, to move) is the branch of classical mechanics that describes the motion of objects without consideration of the causes leading to the motion.

## Kinematics: Geometry of Motion

## Concept: What is kinematics?

Kinematics: The description of motion (position, velocity, and acceleration relationships) without reference to the forces which cause the motion.

## Possible Coordinate Systems

- Rectangular ( $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ )
- Polar ( $\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{z}$ )
- Spherical ( $\boldsymbol{R}, \boldsymbol{\theta}, \boldsymbol{\phi}$ )
- Normal and Tangential $(\boldsymbol{n}, \boldsymbol{t})$



## Outline for Today

- Question of the day
- Kinematics: geometry of motion
- Possible coordinate systems
- Velocity and acceleration
- Graphical interpretations
- Integrating acceleration
- Answer your questions!


## Velocity and Acceleration

$$
t=0 \quad t=t_{\mathrm{A}} \quad t=t_{\mathrm{A}}+\Delta t
$$



- Velocity (v)

$$
\begin{array}{ll}
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}=\frac{d s}{d t} & \frac{\text { DE relating } s, v, a}{a=\frac{d v}{d s / v}=v \frac{d v}{d s}} \\
\text { ion }(a)
\end{array}
$$

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}
$$

## Velocity and Acceleration: Exercise

A particle moving along a straight line has a position ( $s$ ) a function of time ( $t$ ) given by

$$
s(t)=2 t^{3}-24 t+6
$$

where $s$ is measured in meters from a convenient origin and $t$ is in seconds.

Determine (a) the time required for the particle to reach a velocity of $72 \mathrm{~m} / \mathrm{s}$, (b) the acceleration of the particle when it's velocity is $30 \mathrm{~m} / \mathrm{s}$, and (c) the net position change of the particle during the interval from 1 s to 4 s .


$$
B_{1}
$$

## Graphical Interpretations

Clarifying relationships among position, velocity, and acceleration
(a)


- Velocity is slope of $\boldsymbol{s}$ - $\boldsymbol{t}$ curve
- Acceleration is slope of $\boldsymbol{v}$ - $\boldsymbol{t}$ curve
- Net position change $(d s)$ is area $\int_{s_{1}}^{s_{2}} d s=\int_{d_{1}}^{t_{2}} v d t \mid t h$ under $v-t$ curve
- Net velocity change ( $d v$ ) is area under $\boldsymbol{a}$ - $\boldsymbol{t}$ curve

$$
\int_{1_{1}}^{v_{2}} d v=\int_{d_{1}}^{2} a d t
$$

${ }^{(c)}$


## Outline for Today

- Question of the day
- Kinematics: geometry of motion
- Possible coordinate systems
- Velocity and acceleration
- Graphical interpretations
- Integrating acceleration
- Answer your questions!


## Integrating Acceleration

- Case \#1: constant acceleration

$$
\begin{array}{ll}
a=\frac{d v}{d t} & \int_{0}^{v} d v=a \int_{0}^{t} d t \\
a=v \frac{d v}{d s} \quad \int_{0}^{v} v d v=a \int_{0}+a t \\
v= & \frac{d s}{d t}<v_{0_{0}} d s=\int_{0}^{2}\left(v_{0}+a t\right) d t \\
\\
& s=v_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& \text { CAUTION: Equations only for }
\end{array}
$$

## Integrating Acceleration

- Case \#2: $a=f(t)$

$$
\begin{aligned}
& a=\frac{d v}{d t} \quad \int_{v_{0}}^{v} d v=\int_{0} f(t) d t \quad v=v_{0}+\int_{0}^{t} f(t) d t \\
& v=\frac{d s}{d t} \quad \int_{s_{0}} d s=\int_{0}^{t} v d t \quad s=s_{0}+v_{0} t+\iint_{0}^{t} f(t) d t^{2}
\end{aligned}
$$

## Integrating Acceleration: Exercise

Case \#1: constant acceleration

A lunar module is positioned 5 m above the surface and has a downward velocity of $2 \mathrm{~m} / \mathrm{s}$ when its engine stops.

Compute the impact velocity (v) of the module with the moon (hint: gravity is $1 / 6$ earth's gravity).

## Integrating Acceleration: Exercise

Case \#1: constant acceleration

A ball is thrown vertically with a velocity of $80 \mathrm{ft} / \mathrm{s}$ at the edge of a $200-\mathrm{ft}$ cliff.

Calculate the height ( $h$ ) the ball rises and the total time ( $t$ ) to reach the bottom of the cliff.

Neglect air resistance and take acceleration as $a=32.2 \mathrm{ft} / \mathrm{s}^{2}$.

## Integrating Acceleration: Exercise

 Case \#2: $a=f(t)$Acceleration of a particle is given by

$$
a(t)=2 t-10
$$

where $a$ is in meters per second squared and $t$ is in seconds.

Determine the velocity and position as functions of time. The initial position is $s_{0}=-4 \mathrm{~m}$ at $t=0$, and the initial velocity is $v_{0}=3 \mathrm{~m} / \mathrm{s}$.

## Outline for Today

- Question of the day
- Kinematics: geometry of motion
- Possible coordinate systems
- Velocity and acceleration
- Graphical interpretations
- Integrating acceleration
- Answer your questions!


## For Next Time...

- Continue Homework \#1 due next Wednesday (8/29)
- Read Chapter 2, Sections 2.3 and 2.4

