

Question of the Day

A jet flies in a trajectory to allow astronauts experience a weightless condition. The speed at the highest point is $\mathbf{6 0 0} \mathbf{~ m i} / \mathbf{h r}$.

What is the radius of curvature ρ necessary to simulate weightlessness?

Outline for Today

- Question of the day
- Rectangular ($\boldsymbol{x}-\boldsymbol{y}$) coordinates
- Polar (r- $\boldsymbol{\theta}$) coordinates
- Normal and tangential (n-t) coordinates
- Answer your questions!

Recall: Possible Coordinate Systems

- Rectangular ($\mathbf{x}, \boldsymbol{y}, \mathbf{z}$)
- Polar (r, θ, z)
- Spherical ($\boldsymbol{R}, \boldsymbol{\theta}, \boldsymbol{\phi}$)
- Normal and Tangential (n, t)

Path

Recall: $x-y$ Vector Representation

$$
\begin{array}{r}
\mathbf{v}=\dot{\mathbf{r}}=\dot{x} \mathbf{i}+\dot{y} \mathbf{j} \\
\mathbf{a}=\dot{\mathbf{v}}=\ddot{\mathbf{r}}=\ddot{x} \mathbf{i}+\ddot{y} \mathbf{j}
\end{array}
$$

- The x - and y-components are independent
- Resulting motion is a vector combination of x and y-components

Rectangular $(x-y)$ Coordinates

$$
\sum \mathbf{F}=m \mathbf{a}
$$

Rectangular $(x-y)$ Coordinates: Exercise

A particle with mass of $\mathbf{1 0}$ slugs moving in two-dimensions has a position vector (\mathbf{r}) as a function of time (t) with coordinates given by

$$
x(t)=t^{2}-4 t+20, \quad y(t)=3 \sin (2 t)
$$

where \mathbf{r} is measured in feet and t is in seconds.
Determine the magnitude of the net force (\mathbf{F}) accelerating the particle at time $\boldsymbol{t}=\mathbf{3} \mathbf{s}$.

Recall: Possible Coordinate Systems

- Rectangular (x, y, z)
- Polar (r, $\boldsymbol{\theta}, \mathbf{z}$)
- Spherical (R, θ, ϕ)
- Normal and Tangential (n, t)

Recall: $\boldsymbol{r} \boldsymbol{- \theta}$ Vector Representation

 Path

- Useful when motion is measured by a radial distance (r) and an angular position (θ)
- \mathbf{e}_{r} is the unit vector in the r-direction
- \mathbf{e}_{θ} is the unit vector in the θ-direction

Recall: r - θ Acceleration

Path

Polar $(r-\theta)$ Coordinates

$$
\sum \mathbf{F}=m \mathbf{a}
$$

vector r-coord

$$
\begin{aligned}
\mathbf{a}= & a_{r} \mathbf{e}_{r}+ \\
\sum \mathbf{F}= & a_{\theta} \mathbf{e}_{\theta} \\
& \sum F_{r} \mathbf{e}_{r}+\sum F_{\theta} \mathbf{e}_{\theta} \\
& \sum F_{r}=m a_{r} \quad \sum F_{\theta}=m a_{\theta}
\end{aligned}
$$

θ-coord

$$
\frac{\mathbf{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \mathbf{e}_{\mathbf{r}}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}}{\theta \quad \Sigma F}
$$

Polar (r - θ) Coordinates: Exercise

$\mathbf{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \mathbf{e}_{\mathbf{r}}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \mathbf{e}_{\theta}$
Tube A rotates about the vertical O-axis with constant angular velocity ω and contains a small cylinder B of mass m whose radial position is controlled by a cord passing through the tube and wound around a drum of radius b.

Determine the tension T in the cord and θ component of force F_{θ} if the drum has a constant angular rate of rotation of ω_{0} as shown.

Recall: Possible Coordinate Systems

- Rectangular (x, y, z)
- Polar (r, $\boldsymbol{\theta}, \mathrm{z}$)
- Spherical ($\boldsymbol{R}, \boldsymbol{\theta}, \phi)$
- Normal and Tangential $(\boldsymbol{n}, \boldsymbol{t})$

Recall: n - \boldsymbol{t} Vector Representation

Path variables along the tangent (t) and normal (n)

- The n - and t-coordinates move along the path with the particle
- Tangential coordinate is parallel to the velocity
- The positive direction for the normal coordinate is toward the center of curvature

Recall: n - t

Acceleration

$$
\mathbf{v}=\frac{d s}{d t} \mathbf{e}_{\mathbf{t}}=v \mathbf{e}_{\mathbf{t}}=\rho \dot{\beta} \mathbf{e}_{\mathbf{t}}
$$

$$
d s=\rho d \beta
$$

$$
\mathbf{a}=\frac{d \mathbf{v}}{d t}=\frac{d\left(v \mathbf{e}_{\mathbf{t}}\right)}{d t}=v \dot{\mathbf{e}}_{\mathbf{t}}+\dot{v} \mathbf{e}_{\mathbf{t}}
$$

$$
\dot{\mathbf{e}}_{\mathbf{t}}=\frac{d \mathbf{e}_{\mathbf{t}}}{d t}=\left(\frac{d \beta}{d t}\right) \mathbf{e}_{\mathbf{n}}=\dot{\beta} \mathbf{e}_{\mathbf{n}}=\frac{v}{\rho} \mathbf{e}_{\mathbf{n}} \longrightarrow \mathbf{a}=\frac{v^{2}}{\rho} \mathbf{e}_{\mathbf{n}}+\dot{v} \mathbf{e}_{\mathrm{t}}
$$

Normal and Tangential ($n-t$) Coordinates

$$
\Sigma \mathbf{F}=\mathbf{m}
$$

vector n-coord

$$
\begin{array}{cc}
\mathbf{a}= & a_{n} \mathbf{e}_{\mathbf{n}}+ \\
\Sigma \mathbf{F}= & a_{\mathbf{t}} \mathbf{e}_{\mathbf{t}} \\
\mathrm{F}_{n} \mathbf{e}_{\mathrm{n}}+ & \sum F_{\mathrm{t}} \mathbf{e}_{\mathrm{t}} \\
& \sum F_{n}=m a_{n}, \sum F_{\mathrm{t}}=m a_{t}
\end{array}
$$

Normal and Tangential ($n-t$) Coordinates:

Exercise

A 1500-kg car enters an s-curve and slows down from $\mathbf{1 0 0} \mathbf{~ k m} / \mathbf{h}$ at A to a speed of 50 $\mathbf{k m} / \mathbf{h}$ as it passes C.

Determine the total horizontal force exerted by the road on the tires at positions A, B, and C.

Outline for Today

- Question of the day
- Rectangular ($\boldsymbol{x}-\boldsymbol{y}$) coordinates
- Polar (r- $\boldsymbol{\theta}$) coordinates
- Normal and tangential (n-t) coordinates
- Answer your questions!

For Next Time...

- Complete Homework \#7 due on Wednesday (10/12) at the beginning of class
- Read Chapter 3, Articles 3/5

