Rigid Body Equations of Motion

Lecture 22

ME 231: Dynamics

Question of the Day

 $\mathbf{r a d} / \mathrm{s}$ when a 60-g bullet is fired and reaches point A with a velocity of $\mathbf{6 0 0} \mathbf{~ m} / \mathrm{s}$ relative to the barrel.

Determine the horizontal force exerted by the barrel on the bullet?

Outline for Today

- Question of the day
- Curvilinear motion exercises
- General equations of motion
- Plane-motion equations
- Answer your questions!

Curvilinear Motion: Exercise 1

A 2-kg block passes over the top B with a speed of $3.5 \mathrm{~m} / \mathrm{s}$.
Calculate the normal force N_{B} exerted by the path on the block.

Determine the maximum speed v which the block can have at A without losing contact with the path.

Curvilinear Motion: Exercise 2

A 180-lb skier has a speed of $\mathbf{8 0} \mathbf{f t} / \mathbf{s}$ as she approaches the takeoff position A.

Determine the magnitude N of the normal force exerted by the snow on her skies just before she reaches A.

Curvilinear Motion: Exercise 3

Link OA rotates about a horizontal axis through O with constant angular velocity $\omega=3 \mathrm{rad} / \mathrm{s}$. When $\theta=\mathbf{0}$, a small block of mass m is placed on it at a radial distance $r=18 \mathrm{in}$. When $\theta=$ 50 , the block begins to slip.

Determine the coefficient of static friction μ_{s} between the block and link.

Curvilinear Motion: Exercise 4

Two small spheres are free to move inside rotating spherical chambers with radius $R=$ 200 mm.

Determine the angular velocity Ω of the device when the spheres reach a steady-state angular position of $\beta=45$ ㅇ.

Outline for Today

- Question of the day
- Curvilinear motion exercises
- General equations of motion
- Plane-motion equations
- Answer your questions!

General Equations of Motion

Perhaps the most important concept in dynamics!
free-body diagram
force-couple diagram $\Sigma \mathbf{M}_{G}$
kinetic diagram
$\dot{\mathbf{H}}_{G}$
$m \mathbf{a}$
$\sum \mathbf{F}=m \mathbf{a}$

$$
\sum \mathbf{M}_{G}=\dot{\mathbf{H}}_{G}
$$

General Equations of Motion: Angular Momentum

force-couple diagram

kinetic
diagram

$$
\sum \mathbf{M}_{G}=\dot{\mathbf{H}}_{G}
$$

$$
\mathbf{H}_{G}=\sum \boldsymbol{\rho}_{i} \times m_{i} \dot{\mathbf{r}}_{i}
$$

$$
\dot{\mathbf{H}}_{G}=\sum \boldsymbol{\rho}_{i} \times \mathbf{F}_{i}
$$

Plane-Motion Equations

- Rigid body moving in the x - y plane
- Mass center G has an acceleration a
- Body has an angular velocity ω and angular acceleration α

Alternative Moment Equations

$$
\sum \mathbf{F}=m \mathbf{a}
$$

Point \boldsymbol{P} fixed in the body

$$
\begin{gathered}
\sum M_{P}=I_{G} \alpha+m a d \\
\sum \mathbf{M}_{P}=I_{P} \boldsymbol{\alpha}+\boldsymbol{\rho} \times m \mathbf{a}_{P}
\end{gathered}
$$

Point \boldsymbol{O} fixed in an inertial reference system

$$
\sum \mathbf{M}_{o}=I_{o} \boldsymbol{a}
$$

Outline for Today

- Question of the day
- Curvilinear motion exercises
- General equations of motion
- Plane-motion equations
- Answer your questions!

For Next Time...

- Begin Homework \#8 due next Wednesday (10/ 19)
- Read Chapter 6, Articles 6/2 \& 6/3

