Rigid Body Equations of Motion

Lecture 23

ME 231: Dynamics

Question of the Day

The *3200-Ib* front-engine car is traveling forward at a constant velocity when the brakes lock up all four wheels. The coefficient of kinetic friction is 0.8 between the tire and the road.

Determine the *normal force* under each tire just before the skid.

Determine these *forces* during the skid.

24"

Question of the day

- Plane-motion equations (again)
- Unconstrained and constrained motion
- Systems of interconnected bodies
- Step-by-step solution process
- Rigid-body translation
- Answer your questions!

Recall: Plane-Motion Equations

- Rigid body moving in the *x*-*y plane*
- Mass center G has an acceleration a
- Body has an *angular velocity* ω and *angular acceleration* α

ME 231: Dynamics

Plane Motion Types

- Translation
- Fixed-axis rotation
- General plane motion

Unconstrained and Constrained Motion

Unconstrained: a_x , a_y , and α may be determined independently from force/moment equations

Constrained: a_x , a_y , and α kinematic relationships may be determined and then combined with force/moment equations **Systems of Interconnected Bodies**

- Question of the day
- Plane-motion equations (again)
- Unconstrained and constrained motion
- Systems of interconnected bodies
- Step-by-step solution process
- Rigid-body translation
- Answer your questions!

Step-by-Step Solution Process

1. Kinematics

- Identify type of *motion*
- Solve for *linear* and *angular accelerations*

2. Diagram

- Assign *inertial coordinate system*
- Draw complete *free-body diagram*
- Draw kinetic diagram to clarify equations

3. Equations of motion

- Apply 2 linear and 1 angular equations
- Maintain consistent sense
- Solve for no more than 5 scalar unknowns (3 scalar equations of motion and 2 scalar relations from the relative-acceleration equation)

- Question of the day
- Plane-motion equations (again)
- Unconstrained and constrained motion
- Systems of interconnected bodies
- Step-by-step solution process
- Rigid-body translation
- Answer your questions!

Rigid-Body Translation

ME 231: Dynamics

<u>Rigid-Body Translation: Exercise</u>

The **3200-Ib** rear-engine car is traveling forward at a constant velocity when the brakes lock up all four wheels. The coefficient of kinetic friction is 0.8 between the tire and the road.

Determine the normal force under each tire just before the skid. Determine these forces during the skid. $24^{"}$

<u>Rigid-Body Translation: Another Exercise</u>

Determine the value of the *force* **P** which would cause the cabinet to begin to tip.

 What coefficient of static friction is necessary to ensure
10 kg tipping occurs without slipping?

<u>Rigid-Body Translation: Yet Another Exercise</u>

A cleated *conveyor belt* transports *solid cylinders* up a *15°* incline. The diameter of each cylinder is half its height.

Determine the maximum acceleration for the belt without tipping the cylinders as it starts.

- Question of the day
- Plane-motion equations (again)
- Unconstrained and constrained motion
- Systems of interconnected bodies
- Step-by-step solution process
- Rigid-body translation
- Answer your questions!

- Continue Homework #8 due next Wednesday (10/19)
- Read Chapter 6, Article 6/4