Fixed-Axis Rotation

ME 231: Dynamics

Question of the Day

The uniform slender bar is released from rest in the horizontal position shown.

Determine the value of x for which the angular acceleration α is maximum, and determine α at this x.

Outline for Today

- Question of the day
- Fixed-axis rotation
- Parallel axis theorem
- Center of percussion
- Answer your questions!

Recall: Rotation About

 a Fixed Axis- All points (other than those on the axis) move in concentric circles about the axis
- Point A moves in a circle of radius r
- Angular motion of normal line is the angular motion of the rigid body

$$
\begin{aligned}
& v=r \omega \\
& a_{n}=r \omega^{2}=\frac{v^{2}}{r}=v \omega \\
& a_{t}=r \alpha
\end{aligned}
$$

Fixed-Axis Rotation

- Mass center's circular motion easily expressed in n-t coordinates
- Plane-motion equations:

$$
\sum \mathbf{F}=m \mathbf{a} \quad \sum \mathbf{M}_{G}=I_{G} \mathbf{a}
$$

$$
\sum \mathbf{M}_{o}=I_{o} \boldsymbol{a}
$$

Parallel Axis Theorem

Center of Percussion

Fixed-Axis Rotation: Exercise

(a)

(b)

Determine the angular acceleration and the force on the bearing at O for (a) the narrow ring of mass m and (b) the flat circular disk of mass m immediately after each is released from rest with $O C$ horizontal.

Fixed-Axis Rotation: Another Exercise

The 30-in slender bar weighs 20 lb and is mounted on a vertical shaft at O. A torque $M=100 \mathrm{lb}$-in is applied to the bar through its shaft.

Determine the horizontal reaction
force R on the bearing as the bar starts to rotate.

Fixed-Axis Rotation: Yet Another Exercise

The uniform 72-ft mast weighs 600 lb and is hinged at O.
The winch C develops a starting torque of 900 lb -ft.

Determine the total force supported by the pin at O as the mast begins to lift off its support at \boldsymbol{B}. Also find the corresponding angular acceleration α of the mast.

For Next Time...

- Complete Homework \#8 due on Thursday (10/25)
- Read Chapter 7, Section 7.4

