

Question of the Day

The door of a moving car is inadvertently left slightly open. The brakes are applied to give the car a constant rearward acceleration.

Determine expressions for the angular velocity of the door and components of the hinge reaction forces.

Outline for Today

- Question of the day
- Combined translation and rotation
- Answer your questions!

Recall: Rigid-Body Translation

rectilinear

curvilinear

Path of G

$$
\sum \mathbf{F}=m \mathbf{a}
$$

$$
\alpha=0
$$

$$
\omega=0
$$

$$
\begin{aligned}
& \sum M_{G}=I_{G} \alpha=0 \\
& \sum M_{P}=\text { mad } \\
& \sum M_{A}=0
\end{aligned}
$$

$$
\begin{aligned}
& \sum M_{G}=I_{G} \alpha=0 \\
& \sum M_{A}=m a_{n} d_{A} \\
& \sum M_{B}=m a_{t} d_{B}
\end{aligned}
$$

Recall: Fixed-Axis Rotation

- Mass center's circular motion easily expressed in n-t coordinates
- Plane-motion equations:

$$
\sum \mathbf{F}=m \mathbf{a} \quad \sum \mathbf{M}_{G}=I_{G} \boldsymbol{a} \quad \sum \mathbf{M}_{O}=I_{O} \boldsymbol{a}
$$

Recall: Center of Percussion

Combined Translation and Rotation

General Plane Motion: Exercise

In a study of head injury during a crash where lap belts are used, the segmented human model is analyzed.
The hip joint O remains fixed relative to the car, and the torso is treated as a rigid body of mass m pivoted at \boldsymbol{O}.

$$
\begin{array}{lll}
m=50 \mathrm{~kg} & \bar{r}=450 \mathrm{~mm} & r=800 \mathrm{~mm} \\
k_{O}=550 \mathrm{~mm} & \theta=45^{\circ} & a=10 g
\end{array}
$$

Determine the velocity v relative to the car with which the model's head strikes the instrument panel when the car is stopped with a constant deceleration a.

General Plane Motion: Another Exercise

The truck, initially at rest with a solid cylindrical roll of paper shown, moves forward with a constant acceleration a.

Determine the distance s which the truck goes before the paper rolls (without slipping) off the bed of the truck.

General Plane Motion: Yet Another Exercise

A truck has a mass of $2030 \mathbf{~ k g}$ and carries a 1500-mm-diameter spool of cable with a mass of 0.75 kg per meter of length. There are 150 turns on the full spool. The empty spool has a mass of $140 \mathbf{~ k g}$ with radius of gyration of 530 mm.

Determine the tension T in the cable when the truck starts from rest with an acceleration of 0.2 g .

Dimensions in millimeters

Fixed-Axis Rotation:
 Unfinished Exercise

The uniform
72-ft mast weighs 600 Ib and is hinged at O.
The winch C develops a starting torque of $900 \mathrm{lb}-f t$.

Determine the total force supported by the pin at O as the mast begins to lift off its support at \boldsymbol{B}. Also find the corresponding angular acceleration α of the mast.

For Next Time...

- Begin Homework \#9 due on Wednesday (10/31)
- Read Chapter 7, Section 7.4

