Angular Impulse and Momentum

Question of the Day

Outline for Today

- Question of the day
- Angular momentum
- Rate of change of angular momentum
- Angular impulse-momentum principle
- Plane-motion applications
- Conservation of angular momentum
- Answer your questions!
- Exam 2 Survey

Angular Momentum

$$
\mathbf{H}_{O}=\mathbf{r} \times m \mathbf{v}
$$

- Particle of mass m is located by position vector r
- Velocity v and linear momentum $\mathbf{G}=m \mathbf{v}$ are tangent to its path

- The moment of the linear momentum vector $m v$ about point O is the angular momentum H_{0} of P about O
- Perpendicular to plane A defined by \mathbf{r} and \mathbf{v}

Angular Momentum

$\mathbf{H}_{O}=\mathbf{r} \times m \mathbf{v}$

$$
\mathbf{H}_{O}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x & y & z \\
m v_{x} & m v_{y} & m v_{z}
\end{array}\right|
$$

$$
\mathbf{H}_{O}=\mathbf{r} \times m \mathbf{v}
$$

$\left(\mathbf{H}_{O}\right)_{x}=m\left(v_{z} y-v_{y} z\right)$
$\left(\mathbf{H}_{O}\right)_{y}=m\left(v_{x} z-v_{z} x\right)$
$\left(\mathbf{H}_{O}\right)_{z}=m\left(v_{y} x-v_{x} y\right)$

Rate of Change of Angular Momentum

$$
\mathbf{H}_{O}=\mathbf{r} \times m \mathbf{v}
$$

$\sum \mathbf{M}_{o}=\dot{\mathbf{H}}_{o}$

- Differentiate \mathbf{H}_{O} with respect to time
$\dot{\mathbf{H}}_{O}=\dot{\mathbf{r}} \times m \mathbf{v}+\mathbf{r} \times m \dot{\mathbf{v}}$
$\dot{\mathbf{H}}_{o}=\mathbf{v} \times m \overrightarrow{\mathbf{v}}+\mathbf{r} \times m \dot{\mathbf{v}}$
$\dot{\mathbf{H}}_{o}=\mathbf{r} \times m \dot{\mathbf{v}}$
- Resultant $\Sigma \mathbf{M}_{o}$ of all moments $\left(\Sigma \mathbf{M}_{o}\right)_{x}=\left(\dot{\mathbf{H}}_{o}\right)_{x}$ of forces on m is the vector cross product of \mathbf{r} and $\Sigma \mathrm{F}$
$\Sigma \mathbf{M}_{O}=\mathbf{r} \times \Sigma \mathbf{F}=\mathbf{r} \times m \dot{\mathbf{v}}$
$\left(\Sigma \mathbf{M}_{O}\right)_{y}=\left(\dot{\mathbf{H}}_{O}\right)_{y}$
$\left(\Sigma \mathbf{M}_{o}\right)_{z}=\left(\dot{\mathbf{H}}_{o}\right)_{z}$

Angular ImpulseMomentum Principle

$$
\mathbf{H}_{O}=\mathbf{r} \times m \mathbf{v}
$$

$\sum \mathbf{M}_{O}=\dot{\mathbf{H}}_{O}$
$\int_{1}^{2} \Sigma \mathbf{M}_{o} d t=\int_{1}^{2} \dot{\mathbf{H}}_{o} d t$
$\left(\mathbf{H}_{O}\right)_{1}+\int_{1}^{2} \Sigma \mathbf{M}_{O} d t=\left(\mathbf{H}_{O}\right)_{2}$

- Integrate to describe the effect of the angular impulse $\Sigma \mathbf{M}_{o}{ }^{*} t$ on angular momentum \mathbf{H}_{O} of m about O over a finite period of time

$$
\begin{aligned}
& m\left(v_{z} y-v_{y} z\right)_{1}+\int_{1}^{2} \Sigma\left(\mathbf{M}_{O}\right)_{x} d t=m\left(v_{z} y-v_{y} z\right)_{2} \\
& m\left(v_{x} z-v_{z} x\right)_{1}+\int_{1}^{2} \Sigma\left(\mathbf{M}_{O}\right)_{y} d t=m\left(v_{x} z-v_{z} x\right)_{2} \\
& m\left(v_{y} x-v_{x} y\right)_{1}+\int_{1}^{2} \Sigma\left(\mathbf{M}_{O}\right)_{z} d t=m\left(v_{y} x-v_{x} y\right)_{2}
\end{aligned}
$$

Plane-Motion Applications

$$
\mathbf{H}_{O}=\mathbf{r} \times m \mathbf{v}
$$

$$
\sum \mathbf{M}_{O}=\dot{\mathbf{H}}_{O}
$$

$\left(\mathbf{H}_{O}\right)_{1}+\int_{1}^{2} \Sigma \mathbf{M}_{O} d t=\left(\mathbf{H}_{O}\right)_{2}$

- Moments taken about a single axis normal to the plane of motion
- Angular momentum may change magnitude and sense, but the direction is constant

$$
\mathbf{H}_{O}=\mathbf{r} \times m \mathbf{v}
$$

$$
\left(\mathbf{H}_{O}\right)_{1}+\int_{1}^{2} \Sigma \mathbf{M}_{O} d t=\left(\mathbf{H}_{o}\right)_{2}
$$

$$
\begin{gathered}
\Delta \mathbf{H}_{O}=\mathbf{0} \\
\text { or } \\
\left(\mathbf{H}_{O}\right)_{1}=\left(\mathbf{H}_{O}\right)_{2}
\end{gathered}
$$

- If the resultant moment about a fixed point O is zero, then angular momentum remains constant, or is said to be conserved
- Angular momentum may be conserved in one coordinate (e.g., x), but not necessarily in others (e.g., y or z)

Angular Impulse-Momentum: Exercise

The particle of mass m is launched from point
\boldsymbol{O} with a horizontal velocity u at time $\boldsymbol{t}=\mathbf{0}$.

Determine its angular
momentum H_{O} relative to point O as a function of time.

Angular Impulse-Momentum: Another Exercise

The assembly starts from rest and reaches an angular speed of 150 rev/min under the action of a $\mathbf{2 0 - N}$ force T applied to the string for t seconds. Neglect friction and all masses except those of the four $\mathbf{3 - k g}$ spheres.

Determine t.

Angular Impulse-Momentum:

Yet Another Exercise

A 0.1-kg
particle with a velocity of 2

m / s in the
x-direction at A is
guided by a curved rail. The radius of curvature of the rail at \boldsymbol{B} is 500 mm .

Determine the time rate of change of the angular momentum H_{O} about the z-axis through \boldsymbol{O} at both \boldsymbol{A} and \boldsymbol{B}.

Outline for Today

- Question of the day
- Angular momentum
- Rate of change of angular momentum
- Angular impulse-momentum principle
- Plane-motion applications
- Conservation of angular momentum
- Answer your questions!
- Exam 2 Survey

For Next Time...

- Begin Homework \#10 due on Wednesday (11/7)
- Read Chapter 5, Section 5.3
- Read Chapter 8, Section 8.2

