

ME 231: Dynamics

Question of the Day

A man of $mass m_1$ and woman of $mass m_2$ are at opposite ends and begin to approach each other on a platform of $mass m_0$ which moves with negligible friction and initially at rest with s = 0.

Determine an expression for the **displacement** s of the platform when the two meet **in terms** of x_1 relative to the platform.

Outline for Today

- Question of the day
- Linear momentum for particle systems
- Angular momentum for particle systems
- Conservation of momentum for particle systems
- Answer your questions!

Recall: Newton's 2nd Law for Particle Systems

Linear Momentum for Particle Systems

$$\mathbf{G}_{i} = m_{i} \mathbf{V}_{i}$$

$$\mathbf{G} = \sum m_{i} \mathbf{V}_{i}$$

$$\mathbf{G} = \sum m_{i} (\overline{\mathbf{v}} + \dot{\boldsymbol{\rho}}_{i})$$

$$\mathbf{G} = \sum m_{i} \overline{\mathbf{v}} + \frac{d}{dt} \sum m_{i} \boldsymbol{\rho}_{i}$$

$$m \overline{\boldsymbol{\rho}} = \mathbf{0}$$

$$\mathbf{G} = m\overline{\mathbf{v}} \qquad \dot{\mathbf{G}} = m\overline{\mathbf{v}} = m\overline{\mathbf{a}}$$

$$\sum \mathbf{F} = \dot{\mathbf{G}}$$

Angular Momentum for Particle Systems

About a Fixed Point O

$$\left(\mathbf{H}_{O}\right)_{i} = \mathbf{r}_{i} \times m_{i} \mathbf{v}_{i}$$

$$\mathbf{H}_O = \sum (\mathbf{r}_i \times m_i \mathbf{v}_i)$$

$$\dot{\mathbf{H}}_{O} = \sum (\dot{\mathbf{r}}_{i} \times m_{i} \mathbf{v}_{i}) + \sum (\mathbf{r}_{i} \times m_{i} \dot{\mathbf{v}}_{i})$$

$$\dot{\mathbf{H}}_O = \sum (\mathbf{r}_i \times \mathbf{F}_i)$$

$$\sum \mathbf{M}_O = \dot{\mathbf{H}}_O$$

Angular Momentum for Particle Systems

About the Mass Center *G*

System

ME 231: Dynamics

Angular Momentum for Particle Systems

About an Arbitrary Point P

$$\mathbf{H}_{P} = \mathbf{H}_{G} + \overline{\mathbf{\rho}} \times m\overline{\mathbf{v}}$$

 $\mathbf{H}_{P} = \overline{\mathbf{\rho}} \times \sum m_{i} \mathbf{V}_{i} + \mathbf{H}_{C}$

$$\sum \mathbf{M}_{P} = \dot{\mathbf{H}}_{G} + \overline{\boldsymbol{\rho}} \times m\overline{\mathbf{a}}$$

Conservation of Momentum

$$\mathbf{G}_1 = \mathbf{G}_2$$

$$(\mathbf{H}_O)_1 = (\mathbf{H}_O)_2$$
$$(\mathbf{H}_G)_1 = (\mathbf{H}_G)_2$$

- If the *resultant external force* ΣF is zero, then *linear momentum* is *conserved*
- If the resultant moment about a fixed point
 O or mass center G is zero, then angular
 momentum is conserved

Determine the **velocity** of each sphere as they pass the **dashed position**.

Impulse-Momentum: Another Exercise

Four **3-kg** balls are mounted to a frame freely rotating about the vertical z-axis at a rate of 3 kg20 rad/s clockwise when viewed from above. A constant **torque** M = 30 Nm is applied to reverse the rotation.

Determine the *time t* to *reverse* the rotation and reach an angular velocity of 20 rad/s in the same

sense as M.

3 kg

0.5 m

 $0.3 \, \mathrm{m}$

0.5 m

Impulse-Momentum: Yet Another Exercise

A small *car* with mass of **20** kg rolls freely and carries a **5-kg sphere** mounted on a light rotating *rod* with r = 0.4 m and *angular* velocity of **4** rad/s. The car has a velocity v = 0.6 m/s when $\theta = 0^{\circ}$.

Determine ν when $\theta = 60^{\circ}$.

Outline for Today

- Question of the day
- Linear momentum for particle systems
- Angular momentum for particle systems
- Conservation of momentum for particle systems
- Answer your questions!

For Next Time...

- Continue Homework #10 due on Thursday (11/8)
- Read Chapter 8, Section 8.2
- Read Chapter 5, Section 5.1