

ME 231: Dynamics

Question of the Day

A man of mass m_{1} and woman of mass m_{2} are at opposite ends and begin to approach each other on a platform of mass m_{0} which moves with negligible friction and initially at rest with $s=0$.

Determine an expression for the displacement s of the platform when the two meet in terms of x_{1} relative to the platform.

Outline for Today

- Question of the day
- Linear momentum for particle systems
- Angular momentum for particle systems
- Conservation of momentum for particle systems
- Answer your questions!

Recall: Newton's $2^{\text {nd }}$ Law for Particle Systems

$$
\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}+\cdots+\mathbf{f}_{1}+\mathbf{f}_{2}+\mathbf{f}_{3}+\cdots=m_{i} \ddot{\mathbf{r}}_{i}
$$

$$
\sum \mathbf{F}+\sum \mathbf{f}=\sum m_{i} \ddot{\mathbf{r}}_{i}
$$

$$
\begin{aligned}
& \sum \mathbf{F}=m \overline{\overline{\mathbf{r}}} \text { or } \sum \mathbf{F}=m \overline{\mathbf{a}} \\
& \sum F_{x}=m \bar{a}_{x} \\
& \sum F_{y}=m \bar{a}_{y} \\
& \sum F_{z}=m \bar{a}_{z}
\end{aligned}
$$

Linear Momentum for Particle Systems

$$
\begin{aligned}
& \mathbf{G}_{i}=m_{i} \mathbf{v}_{i} \\
& \mathbf{G}=\sum m_{i} \mathbf{v}_{i} \\
& \mathbf{G}=\sum m_{i}\left(\overline{\mathbf{v}}+\dot{\boldsymbol{\rho}}_{i}\right)
\end{aligned}
$$

$$
\mathbf{G}=\sum m_{i} \overline{\mathbf{v}}+\frac{d}{d t} \sum m_{i} \boldsymbol{p}_{i}^{m}
$$

$$
m \overline{\boldsymbol{\rho}}=\mathbf{0}
$$

$$
\mathbf{G}=m \overline{\mathbf{v}} \quad \dot{\mathbf{G}}=m \dot{\overline{\mathbf{v}}}=m \overline{\mathbf{a}}
$$

$$
\sum \mathbf{F}=\dot{\mathbf{G}}
$$

Angular Momentum for Particle Systems

About a Fixed Point \boldsymbol{O}
$\left(\mathbf{H}_{O}\right)_{i}=\mathbf{r}_{i} \times m_{i} \mathbf{v}_{i}$
$\mathbf{H}_{O}=\sum\left(\mathbf{r}_{i} \times m_{i} \mathbf{v}_{i}\right)$

System
boundary
$\dot{\mathbf{H}}_{O}=\sum\left(\dot{\mathbf{r}}_{i} \times{m_{i} \mathbf{v}_{i}}_{\boldsymbol{0}}^{\mathbf{0}}+\sum\left(\mathbf{r}_{i} \times m_{i} \dot{\mathbf{v}}_{i}\right)\right.$
$\dot{\mathbf{H}}_{O}=\sum\left(\mathbf{r}_{i} \times \mathbf{F}_{i}\right)$

$$
\sum \mathbf{M}_{o}=\dot{\mathbf{H}}_{o}
$$

Angular Momentum for Particle Systems

 About the Mass Center $\boldsymbol{G}$$\left(\mathbf{H}_{G}\right)_{i}=\boldsymbol{\rho}_{i} \times m_{i} \dot{\mathbf{r}}_{i}$
 $\mathbf{H}_{G}=\sum\left(\boldsymbol{\rho}_{i} \times m_{i} \dot{\mathbf{r}}_{i}\right)$
$\mathbf{H}_{G}=\sum\left[\boldsymbol{\rho}_{i} \times m_{i}\left(\dot{\overline{\mathbf{r}}}+\dot{\boldsymbol{\rho}}_{i}\right)\right]$
$\mathbf{H}_{G}=\sum\left(\boldsymbol{\rho}_{i} \times m_{i} \dot{\overline{\mathbf{r}}}\right)+\sum\left(\boldsymbol{\rho}_{i} \times m_{i} \dot{\boldsymbol{\rho}}_{i}\right)$
$\mathbf{H}_{G}=\left(-\dot{\dot{\mathbf{r}}} \times \sum \min _{i} \mathbf{p}_{i}^{\boldsymbol{j}}\right)^{\mathbf{0}}+\sum\left(\boldsymbol{\rho}_{i} \times m_{i} \dot{\mathbf{\rho}}_{i}\right)$
$\mathbf{H}_{G}=\sum\left(\boldsymbol{\rho}_{i} \times m_{i} \dot{\boldsymbol{\rho}}_{i}\right)$

$$
\dot{\mathbf{H}}_{G}=\sum\left(\boldsymbol{\rho}_{i} \times \mathbf{F}_{i}\right)
$$

$\sum \mathbf{M}_{G}=\dot{\mathbf{H}}_{G}$

Angular Momentum for Particle Systems

About an Arbitrary Point \boldsymbol{P}
$\left(\mathbf{H}_{P}\right)_{i}=\boldsymbol{\rho}_{i}^{\prime} \times m_{i} \dot{\mathbf{r}}_{i}$

$\mathbf{H}_{P}=\sum\left(\boldsymbol{\rho}_{i}^{\prime} \times m_{i} \dot{\mathbf{r}}_{i}\right)$
$\mathbf{H}_{P}=\sum\left[\left(\overline{\boldsymbol{\rho}}+\boldsymbol{\rho}_{i}\right) \times m_{i} \dot{\mathbf{r}}_{i}\right]$

System
boundary
$\mathbf{H}_{P}=\sum\left(\overline{\boldsymbol{\rho}} \times m_{i} \dot{\mathbf{r}}_{i}\right)+\sum\left(\boldsymbol{\rho}_{i} \times m_{i} \dot{\boldsymbol{r}}_{i}\right)$
$\mathbf{H}_{P}=\overline{\boldsymbol{\rho}} \times \sum m_{i} \mathbf{v}_{i}+\mathbf{H}_{G}$
$\mathbf{H}_{P}=\mathbf{H}_{G}+\overline{\boldsymbol{\rho}} \times m \overline{\mathbf{v}}$
$\sum \mathbf{M}_{P}=\dot{\mathbf{H}}_{G}+\overline{\boldsymbol{\rho}} \times m \overline{\mathbf{a}}$

Conservation of Momentum

$$
\begin{array}{ll}
\mathbf{G}_{1}=\mathbf{G}_{2} & \begin{array}{l}
\left(\mathbf{H}_{O}\right)_{1}=\left(\mathbf{H}_{O}\right)_{2} \\
\hline\left(\mathbf{H}_{G}\right)_{1}=\left(\mathbf{H}_{G}\right)_{2}
\end{array}
\end{array}
$$

- If the resultant external force $\Sigma \mathrm{F}$ is zero, then linear momentum is conserved
- If the resultant moment about a fixed point O or mass center G is zero, then angular momentum is conserved

Impulse-Momentum: Exercise

Two spheres are connected to a rod of negligible mass and are initially at rest. A force F is applied to one sphere in the y-direction and imparts an impulse of 10 Ns during a negligibly short time.

Determine the velocity of each sphere as they pass the dashed position.

Impulse-Momentum: Another Exercise

Four 3-kg balls are mounted to a frame freely rotating about the vertical z-axis at a rate of $20 \mathrm{rad} / \mathrm{s}$ clockwise when viewed from above. A constant torque $M=30 \mathbf{N m}$ is applied to reverse the rotation.

Determine the time t to reverse the rotation and reach an angular velocity of 20 rad/s in the same sense as M.

Impulse-Momentum: Yet Another Exercise

A small car with mass of 20 kg rolls freely and carries a 5-kg sphere mounted on a light rotating rod with $r=$ 0.4 m and angular velocity of $4 \mathrm{rad} / \mathrm{s}$. The car has a velocity $v=0.6$ m / s when $\theta=0^{\circ}$.

Determine v when $\theta=60^{\circ}$.

Outline for Today

- Question of the day
- Linear momentum for particle systems
- Angular momentum for particle systems
- Conservation of momentum for particle systems
- Answer your questions!

For Next Time...

- Continue Homework \#10 due on Thursday (11/8)
- Read Chapter 8, Section 8.2
- Read Chapter 5, Section 5.1

