# Curvilinear (*Two-Dimensional*) Motion

## Lecture 3

ME 231: Dynamics

# **Question of the Day**



- Question of the day
- Time derivative of a vector
- Velocity and acceleration
- Visualization of motion
- X-Y vector representation
- Projectile motion
- Answer your questions!

# **Time Derivative of a Vector**

#### One of the most important concepts in dynamics!



- $\Delta s$  is the scalar displacement along the path  $(A \rightarrow A')$
- **<u>Magnitude</u>** and <u>direction</u> of **r** are known at time *t*
- $\Delta \mathbf{r}$  is the vector (*not scalar*) change of position at  $t + \Delta t$
- **v** has direction of  $\Delta \mathbf{r}$  (*tangent*) and magnitude  $|\Delta \mathbf{r}/\Delta t|$

# **Time Derivative of a Vector: Exercise**

Magnitude changes, but direction constant

and

$$\mathbf{r}(t) = \mathbf{r}(t) = 2t \mathbf{i}$$

$$\mathbf{r}(t) = 2t \mathbf{i}$$

$$\mathbf{r}(t) = 2t \mathbf{i}$$

$$\mathbf{r}(t) = 2t \mathbf{i}$$

$$\Delta \mathbf{r} = (4-2) \mathbf{i} = 2\mathbf{i}$$

$$\mathbf{r}(t) = 2t \mathbf{i}$$

$$\Delta \mathbf{r} = (4-2) \mathbf{i} = 2\mathbf{i}$$

$$\Delta \mathbf{r} = (4-2) \mathbf{i} = 2\mathbf{i}$$

$$\Delta \mathbf{r} = (4-2) \mathbf{i} = 2\mathbf{i}$$

# **Time Derivative of a Vector: Another Case**

Magnitude constant, but direction changes



#### v has

direction of  $\Delta \mathbf{r}$ 

and magnitude  $|\Delta \mathbf{r}/\Delta t|$ 

# **Time Derivative of a Vector: Another Case**

Magnitude changes AND direction changes

v has



## **Velocity and Acceleration**



- Question of the day
- Time derivative of a vector
- Velocity and acceleration
- Visualization of motion
- X-Y vector representation
- Projectile motion
- Answer your questions!

## **Visualization of Motion**



**Hodograph** is a diagram that gives a vectorial visual representation of the movement of a body.

### **Recall: Possible Coordinate Systems**

- Rectangular (x, y, z)
- Polar (*r*, *θ*, *z*)
- Spherical ( $R, \theta, \phi$ )
- Normal and Tangential (*n*, *t*)





- The *x* and *y*-components are independent
- Resulting motion is a vector combination of xand y-components

A particle moving in two-dimensions has a position vector (**r**) as a function of time (*t*) with coordinates given by

 $x(t) = t^2 - 4t + 20$ ,  $y(t) = 3 \sin(2t)$ 

where **r** is measured in inches and *t* is in seconds.

Determine the magnitude of the **velocity** (V) and the **acceleration** (a) at time t = 3 s.

- Question of the day
- Time derivative of a vector
- Velocity and acceleration
- Visualization of motion
- X-Y vector representation
- Projectile motion
- Answer your questions!

### **Projectile Motion**



### **Projectile Motion: Exercise**



What is the minimum horizontal **velocity** (*u*) a boy can throw a rock at *A* and have it clear the obstruction at *B*?

A rocket has expended all its fuel when it reaches **position** A, where it has a **velocity** of u at an angle  $\theta$ with respect to the horizontal. It attains an additional **height** h at **position** B after traveling a **distance** s from A.



Determine expressions for *h*, *s*, and the *time t* of flight from *A* to *B*.

With a horizontal **velocity** ( $v_x = 30$  ft/s), what is the vertical **velocity** ( $v_y$ ) of the long jumper at takeoff to make the jump shown? What is the **vertical rise** (h)?



- Question of the day
- Time derivative of a vector
- Velocity and acceleration
- Visualization of motion
- X-Y vector representation
- Projectile motion
- Answer your questions!

- Complete Homework #1 due on Wednesday (8/29) at the *beginning of class*
- Read Chapter 2, Section 2.5