Curvilinear (Two-Dimensional) Motion

Lecture 3

ME 231: Dynamics

Question of the Day

A particle moving along a curved path has a position vector (r) given by

$$
\mathbf{r}=x \mathbf{i}+y \mathbf{j}
$$

Determine the velocity and acceleration of the particle.

Path

Outline for Today

- Question of the day
- Time derivative of a vector
- Velocity and acceleration
- Visualization of motion
- X-Y vector representation
- Projectile motion
- Answer your questions!

Time Derivative of a Vector

One of the most important concepts in dynamics!

$$
\mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}
$$

- Δs is the scalar displacement along the path $\left(A \rightarrow A^{\prime}\right)$
- Magnitude and direction of \mathbf{r} are known at time \boldsymbol{t}
- $\Delta \mathbf{r}$ is the vector (not scalar) change of position at $t+\Delta t$
- \mathbf{v} has direction of $\Delta \mathbf{r}$ (tangent) and magnitude $|\Delta \mathbf{r} / \Delta t|$

Time Derivative of a Vector: Exercise

Magnitude changes, but direction constant

$$
\mathbf{r}(t)=2 t \mathbf{i}
$$

$$
\Delta \mathbf{r}=(4-2) \mathbf{i}=2 \mathbf{i}
$$

\mathbf{v} has
direction of $\Delta \mathbf{r}$ and magnitude $|\Delta r / \Delta t|$

$$
\left|\frac{\Delta \mathbf{r}}{\Delta t}\right|=\left|\frac{(4-2) \mathbf{i}}{(2-1)}\right|=\left|\frac{2 \mathbf{i}}{1}\right|=2
$$

Time Derivative of a Vector: Another Case

Magnitude constant, but direction changes
\mathbf{v} has

$$
\mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}
$$

direction of $\Delta \mathrm{r}$ and magnitude $|\Delta r / \Delta t|$

Time Derivative of a Vector: Another Case

Magnitude changes AND direction changes
\mathbf{v} has

$$
\mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}
$$

direction of $\Delta \mathrm{r}$ and magnitude $|\Delta r / \Delta t|$

Velocity and Acceleration

At $A, \quad \mathbf{v}=\frac{d \mathbf{r}}{d t}=\dot{\mathbf{r}}$
$\mathbf{a}=\frac{d \mathbf{v}}{d t}=\dot{\mathbf{v}}$
At $A^{\prime}, \quad \mathbf{v}^{\prime}=\frac{d(\mathbf{r}+\Delta \mathbf{r})}{d t} \quad \Delta \mathbf{v}=\mathbf{v}^{\prime}-\mathbf{v}$

Outline for Today

- Question of the day
- Time derivative of a vector
- Velocity and acceleration
- Visualization of motion
- X-Y vector representation
- Projectile motion
- Answer your questions!

Visualization of Motion

Hodograph is a diagram that gives a vectorial visual representation of the movement of a body.

Recall: Possible Coordinate Systems

- Rectangular ($\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$)
- Polar (r, θ, z)
- Spherical ($\boldsymbol{R}, \boldsymbol{\theta}, \phi)$
- Normal and

Tangential (n, t)

Path

$\underline{X-Y}$ Vector Representation

$$
\mathbf{v}=\dot{\mathbf{r}}=\dot{x} \mathbf{i}+\dot{y} \mathbf{j}
$$

$$
\mathbf{a}=\dot{\mathbf{v}}=\ddot{\mathbf{r}}=\ddot{x} \mathbf{i}+\ddot{y} \mathbf{j}
$$

\boldsymbol{B}_{4}

A

- The x - and y-components are independent
- Resulting motion is a vector combination of x and y-components

X-Y Vector Representation: Exercise

A particle moving in two-dimensions has a position vector (r) as a function of time (t) with coordinates given by

$$
x(t)=t^{2}-4 t+20, y(t)=3 \sin (2 t)
$$

where \mathbf{r} is measured in inches and \boldsymbol{t} is in seconds.

Determine the magnitude of the velocity (v) and the acceleration (a) at time $t=3 \mathrm{~s}$.

Outline for Today

- Question of the day
- Time derivative of a vector
- Velocity and acceleration
- Visualization of motion
- X-Y vector representation
- Projectile motion
- Answer your questions!

Projectile Motion

Projectile Motion: Exercise

What is the minimum horizontal velocity (u) a boy can throw a rock at A and have it clear the obstruction at B ?

Projectile Motion: Exercise

A rocket has expended all its fuel when it reaches position A, where it has a velocity of u at an angle θ with respect to the horizontal. It attains an additional height h at position B after traveling a distance s from A.

Determine expressions for h, s, and the time t of flight from A to B.

Projectile Motion: Exercise

With a horizontal velocity ($v_{x}=30 \mathrm{ft} / \mathrm{s}$), what is the vertical velocity (v_{y}) of the long jumper at takeoff to make the jump shown? What is the vertical rise (h)?

Outline for Today

- Question of the day
- Time derivative of a vector
- Velocity and acceleration
- Visualization of motion
- X-Y vector representation
- Projectile motion
- Answer your questions!

For Next Time...

- Complete Homework \#1 due on Wednesday (8/29) at the beginning of class
- Read Chapter 2, Section 2.5

