Impulse-Momentum Problems

Lecture 30

ME 231: Dynamics

Lecture 29

ME 231: Dynamics

• Question of the day

- Linear impulse and momentum problems (5.1 & 5.2)
- Angular impulse and momentum problems (5.3)
- System impulse-momentum problems (8.2)
- Answer your questions!

Linear Impulse and Momentum: Exercise 1

The basket and From launch occupants have a tower combined *mass* of 320 kg and approach the netting at a **speed** of **28 m/s**. The netting is connected to **20** *m* of chain with a *mass* of

18 kg/m and the **coefficient of kinetic friction** between the chain and ground is **0.70**.

Determine the initial **velocity** *v* of the chain when the cage engages the net and find the **time** *t* to bring the cage to a stop.

Linear Impulse and Momentum: Exercise 2

ME 231: Dynamics

Angular Impulse and Momentum: Exercise 1

Using only the angular impulse-momentum principle, determine the expression for $\ddot{\theta}$ in terms of θ and the **velocity** v of the pendulum at $\theta = 90^{\circ}$.

Angular Impulse and Momentum: Exercise 2

The projectile of **mass** *m* is launched with **speed** v_{θ} at the **angle** θ .

Determine the magnitude H_0 of the **angular momentum** about the launch **point** O at (a) the instant of **launch** and (b) the instant of **impact**.

System Impulse-Momentum: Exercise 1

Determine the *time t* required to bring the centrifuge to an *angular velocity* ω from rest under a constant *torque M* applied to the shaft.

mM

System Impulse-Momentum: Exercise 2

 v_1

Two projectiles, each weighing 20 lb, are fired simultaneously with identical velocities $v_r = 800$ ft/s relative to the cart weighing 2000 lb and moving opposite to the firing with an initial velocity v_1 = 4 ft/s.

Determine the **velocity** v_2 of the cart after the projectiles have been fired.

- Question of the day
- Linear impulse and momentum problems (5.1 & 5.2)
- Angular impulse and momentum problems (5.3)
- System impulse-momentum problems (8.2)
- Answer your questions!

- Continue Homework #10 due on Thursday (11/8)
- Read Chapter 8, Sections 8.2 & 8.3