Impulse-Momentum Problems

Lecture 30

ME 231: Dynamics

ME 231: Dynamics

Question of the Day

Each of five connected particles has a mass of $y \quad 0.6 \mathrm{~kg}$, the velocity of G is $3 \mathbf{i}+4 \mathrm{j}$, and the
 angular momentum of the system about G is $1.2 \mathrm{k} \mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$.

Determine the angular momentum
H_{O} of the system about O.

Outline for Today

- Question of the day
- Linear impulse and momentum problems (5.1 \& 5.2)
- Angular impulse and momentum problems (5.3)
- System impulse-momentum problems (8.2)
- Answer your questions!

Linear Impulse and Momentum: Exercise 1

The basket and occupants have a combined mass of 320 kg and approach the netting at a speed of $28 \mathrm{~m} / \mathrm{s}$. The netting is connected to 20 m of chain with a mass of $18 \mathrm{~kg} / \mathrm{m}$ and the coefficient of kinetic friction between the chain and ground is $\mathbf{0 . 7 0}$.

Determine the initial velocity v of the chain when the cage engages the net and find the time t to bring the cage to a stop.

Linear Impulse and Momentum: Exercise 2

The 80-Ib boy takes a running jump with a velocity of $16 \mathrm{ft} / \mathrm{s}$ onto 10-/b skateboard and impact lasts 0.05 s.

Determine the final speed v along the horizontal surface and the total normal force N exerted by the surface on the skateboard during impact.

Angular Impulse and Momentum: Exercise 1

Using only the angular impulse-momentum principle, determine the expression for $\ddot{\theta}$ in terms of θ and the velocity v of the pendulum at $\theta=90^{\circ}$.

Angular Impulse and Momentum: Exercise 2

The projectile of mass m is launched with speed v_{0} at the angle θ.

Determine the magnitude \boldsymbol{H}_{O} of the angular momentum about the launch point O at (a) the instant of launch and (b) the instant of impact.

System Impulse-Momentum: Exercise 1

Determine the time t required to bring the centrifuge to an angular velocity ω from rest under a constant torque M applied to the shaft.

System Impulse-Momentum: Exercise 2

Two projectiles, each weighing 20 lb , are fired simultaneously with identical velocities $v_{r}=\mathbf{8 0 0} \mathbf{f t} / \mathrm{s}$ relative to the cart weighing 2000 lb and moving opposite to the firing with an initial velocity v_{1} $=4 \mathrm{ft} / \mathrm{s}$.

Determine the velocity v_{2} of the cart after the projectiles have been fired.

Outline for Today

- Question of the day
- Linear impulse and momentum problems (5.1 \& 5.2)
- Angular impulse and momentum problems (5.3)
- System impulse-momentum problems (8.2)
- Answer your questions!

For Next Time...

- Continue Homework \#10 due on Thursday (11/8)
- Read Chapter 8, Sections 8.2 \& 8.3

