

# Impulse-Momentum for Rigid Bodies Lecture 31

ME 231: Dynamics

 $H_{O} = I_{G}\omega + mvd$ **Question of the Day** A slender bar of mass 0.8 kg and 0.4 m *length 0.4 m* is falling with a velocity v = 2 m/s and angular velocity  $\omega = 10 \text{ rad/s}$ . θ ω Determine the angular momentum **H**<sub>0</sub> of the bar about point O.  $0.3 \,\mathrm{m}$ 

# • Question of the day

- Linear momentum for rigid bodies
- Angular momentum for rigid bodies
- Interconnected rigid bodies
- Conservation of momentum for rigid bodies
- Answer your questions!

#### **Recall: Linear Momentum for Particle Systems**

$$\mathbf{G}_{i} = m_{i} \mathbf{v}_{i}$$

$$\mathbf{G} = \sum m_{i} \mathbf{v}_{i}$$

$$\mathbf{G} = \sum m_{i} (\overline{\mathbf{v}} + \dot{\mathbf{p}}_{i}) \qquad m\overline{\mathbf{p}} = \mathbf{0}$$

$$\mathbf{G} = \sum m_{i} \overline{\mathbf{v}} + \frac{d}{dt} \sum m_{i} \mathbf{p}_{i}$$

$$\mathbf{G} = m\overline{\mathbf{v}} \qquad \dot{\mathbf{G}} = m\overline{\mathbf{v}} = m\overline{\mathbf{a}}$$

$$\sum \mathbf{F} = \dot{\mathbf{G}}$$

### **Linear Momentum for Rigid Bodies**

• Special case of a general system of particles



### **Recall: Angular Momentum for Particle Systems**



**ME 231: Dynamics** 





ME 231: Dynamics

### **Recall: Systems of Interconnected Bodies**



#### **Interconnected Rigid Bodies**



## **Recall: Conservation of Momentum for Systems**

$$\mathbf{G}_{1} = \mathbf{G}_{2}$$
$$\begin{pmatrix} (\mathbf{H}_{O})_{1} = (\mathbf{H}_{O})_{2} \\ (\mathbf{H}_{G})_{1} = (\mathbf{H}_{G})_{2} \end{pmatrix}$$

- If the *resultant external force*  $\Sigma F$  is zero, then *linear momentum* is *conserved*
- If the *resultant moment about* a fixed *point O* or *mass center G* is zero, then *angular momentum* is *conserved*

**Conservation of Momentum for Rigid Bodies** 

**Exactly the same as for particle systems!** 

$$\mathbf{G}_{1} = \mathbf{G}_{2}$$
$$\begin{pmatrix} (\mathbf{H}_{O})_{1} = (\mathbf{H}_{O})_{2} \\ (\mathbf{H}_{G})_{1} = (\mathbf{H}_{G})_{2} \end{pmatrix}$$

- If the *resultant external force*  $\Sigma F$  is zero, then *linear momentum* is *conserved*
- If the *resultant moment about* a fixed *point O* or *mass center G* is zero, then *angular momentum* is *conserved*

A constant horizontal *force P* is applied the light yoke attached to the *center O* of a uniform circular disk of *mass m*, which is initially at rest

and rolls without slipping.

Determine the **velocity v** of the **center 0** in terms of *t*.

## **Impulse-Momentum for Rigid Bodies: Exercise 2**



A uniform circular disk has a **mass** of **25 kg** and is mounted to a rotating bar in three different ways and  $\omega_0$ = **4 rad/s** 

Determine the **angular momentum**  $H_0$  of the disk about **point** O for each case.

## **Impulse-Momentum for Rigid Bodies: Exercise 3**



- Question of the day
- Linear momentum for rigid bodies
- Angular momentum for rigid bodies
- Interconnected rigid bodies
- Conservation of momentum for rigid bodies
- Answer your questions!

# • Exam 2.a on Friday (11/9)

- Homework #10 due on *Monday* (11/12)
- Homework #11 due on Wednesday(11/14)
- Read Chapter 8, Sections 8.2 & 8.3