

Kinetics: **F**=m**a** (Ch. 3 & 7) Review Lecture 32

ME 231: Dynamics

Question of the Day

What is the most important $F_2 = 50(\cos 30^\circ j + \sin 30^\circ k)$ concept in *mechanics*?

Free Body Diagram

What is the most important concept in *dynamics*?

Equations of Motion

- Question of the day
- Where are we in the course?
- Inverse vs. forward dynamics
- Kinetics: cause of motion
- Possible solutions to kinetics problems
- Direct application of Newton's 2nd Law
- Plane motion types for rigid bodies
- Equations, equations, equations...
- Exam 2a breakdown (kinetics: **F**=m**a**)

Where are we in the course?

Concept: What is dynamics?

Where are we in the course?

Calculation: How do we use dynamics?

Newton's 2nd Law

ME 231: Dynamics

Inverse vs. Forward Dynamics

Kinetics: Cause of Motion?

Concept: What is kinetics?

Possible Solutions to Kinetics Problems

- Direct application of *Newton's 2nd Law* force-mass-acceleration method
 - Chapters 3 and 7
- Use of *impulse* and *momentum* methods
 Chapters 5 and 8
- Use of *work* and *energy* principles
 Chapter 4

Step-by-Step Solution Process

1. Kinematics

- Identify type of *motion*
- Solve for *linear* and *angular accelerations*

2. Diagram

- Assign *inertial coordinate system*
- Draw complete *free-body diagram*
- Draw kinetic diagram to clarify equations

3. Equations of motion

- Apply **2** *linear* and **1** *angular equations*
- Maintain consistent sense
- Solve for no more than 5 scalar unknowns (3 scalar equations of motion and 2 scalar relations from the relative-acceleration equation)

- Question of the day
- Where are we in the course?
- Inverse vs. forward dynamics
- Kinetics: cause of motion
- Possible solutions to kinetics problems
- Direct application of Newton's 2nd Law
- Plane motion types for rigid bodies
- Equations, equations, equations...
- Exam 2a breakdown (kinetics: **F**=m**a**)

Direct Application of Newton's 2nd Law

 $x(t) = t^2 - 4t + 20$, $y(t) = 3 \sin(2t)$

where **r** is measured in feet and **t** is in seconds.

Determine the magnitude of the net **force** (\mathbf{F}) **accelerating** the particle at time t = 3 s.

Polar (r-θ) Coordinates: Exercise

$$\mathbf{a} = \left(\ddot{r} - r\dot{\theta}^2\right)\mathbf{e}_{\mathbf{r}} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right)\mathbf{e}_{\theta}$$

Tube *A* rotates about the vertical *O-axis* with constant *angular velocity w* and contains a small *cylinder B* of *mass m* whose radial position is controlled by a cord passing through the tube and wound around a *drum* of *radius b*.

Determine the **tension** *T* in the cord and θ **component** of **force** F_{θ} if the drum has a constant angular rate of rotation of ω_{θ} as shown.

Normal and Tangential (n-t) Coordinates:

A **1500-kg** car enters an s-curve and slows down from **100 km/h** at **A** to a speed of **50 km/h** as it passes **C**.

Determine the total *horizontal force* exerted by the road on the tires at *positions A*, *B*, and *C*.

- Question of the day
- Where are we in the course?
- Inverse vs. forward dynamics
- Kinetics: cause of motion
- Possible solutions to kinetics problems
- Direct application of Newton's 2nd Law
- Plane motion types for rigid bodies
- Equations, equations, equations...
- Exam 2a breakdown (kinetics: **F**=m**a**)

Plane Motion Types for Rigid Bodies

- Translation
- Fixed-axis rotation
- General plane motion

<u>Rigid-Body Translation</u>

<u>Rigid-Body Translation: Exercise</u>

A cleated **conveyor belt** transports **solid cylinders** up a **15°** incline. The diameter of each cylinder is half its height.

Determine the maximum acceleration for the belt without tipping the cylinders as it starts.

 15°

Fixed-Axis Rotation

- Mass center's circular motion easily expressed in n-t coordinates
- Plane-motion equations:

$$\sum \mathbf{F} = m\mathbf{a}$$
 $\sum \mathbf{M}_G = I_G \boldsymbol{\alpha}$ $\sum \mathbf{M}_O = I_O \boldsymbol{\alpha}$

Fixed-Axis Rotation: Exercise

General Plane Motoin: Combined Translation and Rotation

A truck has a *mass* of *2030 kg* and carries a *1500-mm-diameter spool* of cable with a *mass* of *0.75 kg per meter of length*. There are *150 turns* on the full spool. The empty spool has a *mass* of *140 kg* with radius of gyration of 530 mm.

1650

750

1800

1050

G

Dimensions in millimeters

Determine the **tension** *T* in the cable when the truck starts from rest with an **acceleration** of **0.2***g*.

R

1800

- Question of the day
- Where are we in the course?
- Inverse vs. forward dynamics
- Kinetics: cause of motion
- Possible solutions to kinetics problems
- Direct application of Newton's 2nd Law
- Plane motion types for rigid bodies
- Equations, equations, equations...
- Exam 2a breakdown (kinetics: **F**=m**a**)

Equations, Equations, Equations... Particle Kinetics: F=ma

Lecture	Equations	
 18. Newton 2nd Law 19. Eqs. of Motion 20. Rectilinear 	$\sum \mathbf{F} = m\mathbf{a}$	$\sum F_y = ma_y = m\ddot{y}$
	$\sum F_x = ma_x = m\ddot{x}$	$\sum F_z = ma_z = m\ddot{z}$
21 Curvilinear	$\sum F_r = ma_r$	$\sum F_n = ma_n$
	$\sum F_{\theta} = ma_{\theta}$	$\sum F_t = ma_t$
27. Lin. Imp. Mom.	$\mathbf{G} = m\mathbf{v}$ $\Sigma \mathbf{F} = \dot{\mathbf{G}}$	$\mathbf{G}_{1} + \int_{1}^{t_{2}} \Sigma \mathbf{F} dt = \mathbf{G}_{2}$ $\Delta \mathbf{G} = 0$
28. Ang. Imp. Mom.	$\mathbf{H}_{o} = \mathbf{r} \times m\mathbf{v}$ $\sum \mathbf{M}_{o} = \dot{\mathbf{H}}_{o}$	$ (\mathbf{H}_{O})_{1} + \int_{1}^{2} \Sigma \mathbf{M}_{O} dt = (\mathbf{H}_{O})_{2} \Delta \mathbf{H}_{O} = 0 $
29. Sys. Imp. Mom.	$\mathbf{G} = \sum \mathbf{v} \mathbf{H}_G = \sum (\mathbf{\rho}_i)$ $\mathbf{H}_O = \sum (\mathbf{r}_i \times m_i \mathbf{v}_i) \sum \mathbf{M}_O$	$\mathbf{H}_{P} = \mathbf{H}_{G} + \overline{\mathbf{\rho}} \times m\overline{\mathbf{v}}$ $\mathbf{H}_{G} = \dot{\mathbf{H}}_{G} \sum \mathbf{M}_{P} = \dot{\mathbf{H}}_{G} + \overline{\mathbf{\rho}} \times m\overline{\mathbf{a}}$

Equations, Equations, Equations... Rigid Body Kinetics: F=ma

Lecture

Equations

18. Newton 2nd Law
22. Gen. Eqs. Mot. I
23. Gen. Eqs. Mot. II
$$\sum \mathbf{M}_{G} = \dot{\mathbf{H}}_{G}$$

 $\dot{\mathbf{H}}_{G} = \sum \boldsymbol{\rho}_{i} \times \mathbf{F}_{i}$
 $\sum \mathbf{F} = m\mathbf{a}$
 $\sum \mathbf{M}_{G} = I_{G}\boldsymbol{\alpha}$
 $\sum \mathbf{M}_{O} = I_{O}\boldsymbol{\alpha}$
 $I_{O} = I_{G}\boldsymbol{\alpha}$
 $I_{O} = I_{G}\boldsymbol{\alpha} + mad$
 $I_{O} = I_{G}\boldsymbol{\alpha}$
 $I_{O} = I_{G}\boldsymbol{\alpha}$
 $I_{O} = I_{G}\boldsymbol{\alpha}$
 $I_{O} = I_{G}\boldsymbol{\alpha} + mad$
 $\sum \mathbf{M}_{P} = I_{P}\boldsymbol{\alpha} + \boldsymbol{\rho} \times m\mathbf{a}_{P}$
 $\sum \mathbf{M}_{P} = I_{G}\boldsymbol{\alpha} + mad$
 $\sum \mathbf{M}_{P} = I_{G}\boldsymbol{\alpha} + mad$
 $\sum \mathbf{M}_{P} = I_{G}\boldsymbol{\alpha} + mad$
 $\sum \mathbf{F} = m\mathbf{a}$
 $\sum \mathbf{M}_{G} = I_{G}\boldsymbol{\alpha}$ 25. Gen. Plane Mot. I
26. Gen. Plane Mot. II
 $\sum \mathbf{F} = m\mathbf{a}$
 $\sum \mathbf{M}_{G} = I_{G}\boldsymbol{\alpha}$
 $\sum \mathbf{F} = I_{G}\boldsymbol{\alpha} + mad$
 $\sum \mathbf{M}_{P} = I_{Q}\boldsymbol{\alpha} + mad$
 $\sum \mathbf{M}_{Q} = I_$

Exam 2a Breakdown (particle kinetics: F=ma)

Exam 2 Breakdown (rigid body kinetics: F=ma)

- Review Chapters 3 & 7
- Review Lectures slides
 - <u>http://rrg.utk.edu/resources/ME231/lectures.html</u>
- Review Examples from class
 - <u>http://rrg.utk.edu/resources/ME231/examples.html</u>
- Exam #2a on Friday (11/9)