Work and Kinetic Energy
Lecture 35

ME 231: Dynamics
Question of the Day

A 50-kg crate is given an initial velocity of 4 m/s down the chute at A. The coefficient of kinetic friction is 0.30.

Determine the velocity \(v \) of the crate when it reaches the bottom of the chute at B.
Outline for Today

• Question of the day
• From $F=ma$ to work and energy
• Definition of work
• Units of work
• Calculation of work
• Examples of work
• Principle of work and kinetic energy
• Advantages of the work-energy method
• Answer your questions!
Recall: Possible Solutions to Kinetics Problems

- Direct application of *Newton’s 2nd Law*
 - force-mass-acceleration method
 - *Chapters 3 and 7*
- Use of *impulse* and *momentum* methods
 - *Chapters 5 and 8*
- Use of *work* and *energy* principles
 - *Chapters 4 and 8*
From \(F = ma \) to Work and Energy

- **Integrate** equations of motion with respect to **displacement**
- **Work** \((U_{1-2})\) on \(m \) equals change in **kinetic energy** \((\Delta T)\) of \(m \)
- Facilitates the **solution** of problems where **forces** act over specified **displacement** interval

\[
\Sigma F = ma \\
\int_{s_1}^{s_2} \Sigma F \cdot dr = \int_{v_1}^{v_2} ma \cdot dv \\
\int_{s_1}^{s_2} F_t \cdot ds = \int_{v_1}^{v_2} mv \cdot dv \\
\int_{s_1}^{s_2} F_t \cdot ds = \frac{1}{2} m (\Delta v^2) \\
U_{1-2} = \Delta T
\]
Definition of Work

- Particle of **mass** m is located by **position vector** r
- **Displacement vector** dr is tangent to its path
- Work done by **force** F during **displacement** dr is the **dot product** of F and dr

$$dU = F \cdot dr$$
$$dU = F \, ds \, \cos \alpha$$
$$dU = F_t \, ds$$
Units of Work

- SI units are \textbf{force (N)} times \textbf{displacement (m)}
- Special unit named \textbf{joule (J)} equal to 1 N acting over 1 m
- Not to be confused with the unit for \textbf{moment of force} or \textbf{torque (Nm)}

\[
dU = \mathbf{F} \cdot d\mathbf{r}
\]
\[
dU = F \, ds \, \cos \alpha
\]
\[
dU = F_t \, ds
\]
Calculation of Work

During a finite movement, the **force** does an amount of **work** equal to:

\[
U = \int_{s_1}^{s_2} F \cdot dr
\]

\[
U = \int_{1}^{2} \left(F_x dx + F_y dy + F_z dz \right)
\]

\[
U = \int_{s_1}^{s_2} F_t ds
\]

\[
dU = F \cdot dr
\]

\[
dU = F_t ds \cos \alpha
\]

\[
dU = F_t ds
\]
Examples of Work: Constant Force

- **Constant force** P applied to the body as it moves from **position 1** to **2**

- **Work** interpreted as **force** $P \cos \alpha$ times the **distance** L traveled

\[
U = \int_{x_1}^{x_2} P \cos \alpha \, dx = P \cos \alpha (x_2 - x_1) = PL \cos \alpha
\]
Examples of Work: Spring Force

- **Linear spring** of stiffness k
- **Force** to stretch or compress is proportional to x
- **Spring force** exerted on body is $F = -kx$ i

\[
U = \int_{1}^{2} F \cdot dr = \int_{1}^{2} (-kx \textbf{i}) \cdot dx \textbf{i}
\]

\[
U = -\int_{x_1}^{x_2} kx \, dx = \frac{1}{2}k(x_1^2 - x_2^2)
\]
Examples of Work:

- **Acceleration of gravity** g is constant
- **Work** is done by the **weight** mg over an altitude change $(y_2 - y_1)$

\[
U = \int_{1}^{2} \mathbf{F} \cdot d\mathbf{r} = \int_{1}^{2} (-mg \, \mathbf{j}) \cdot (dx \, \mathbf{i} + dy \, \mathbf{j})
\]

\[
U = -mg \int_{y_1}^{y_2} dy = -mg(y_2 - y_1)
\]
Principle of Work and Kinetic Energy

- The **kinetic energy** T of a particle is

 \[T = \frac{1}{2} mv^2 \]

- **Work** done to bring it a particle from velocity v_1 to a velocity v_2

 \[U_{1-2} = \frac{1}{2} m (v_2^2 - v_1^2) \]

 \[U_{1-2} = T_2 - T_1 = \Delta T \quad \text{(work-energy eq.)} \]

 \[T_1 + U_{1-2} = T_2 \]
Advantages of the Work-Energy Method

- **Avoids** the need for computing *accelerations*
- Leads directly to *velocity changes* as *functions* of *forces* doing *work*
- Involves *only* those *forces which do work*
- Enables *analysis* of a *system* of particles *rigidly connected* without isolating individual particles

\[
T = \frac{1}{2} m v^2
\]

\[
T_1 + U_{1-2} = T_2
\]
Under the action of force P, the cart moves from initial position $x_1 = -6\text{ in}$ to the final position $x_2 = 3\text{ in}$.

Determine the work done on the cart by (a) the spring and (b) the weight.
The design of a spring bumper for a 3500-lb car must stop the car from a speed of 5 mph in a distance of 6 in of spring deformation.

Determine the stiffness k for each of two springs behind the bumper.
The 300-lb carriage has an initial *velocity* of *9 ft/s* down the incline at *A*, when a constant *force* of *110 lb* is applied to the cable.

Determine the *velocity* of the carriage when it reaches *B*.
Outline for Today

• Question of the day
• From $F=ma$ to work and energy
• Definition of work
• Units of work
• Calculation of work
• Examples of work
• Principle of work and kinetic energy
• Advantages of the work-energy method
• Answer your questions!
For Next Time...

- Begin Homework #12 due on **Monday (11/26)**, note date change
- All **grades** (Exam 2a&b, HW 12, projected “**final**” course grade) on **Wednesday (11/28)**
- Final **Review** and first opportunity to choose **Final Exam Weighting** on **Monday (12/3)**
- Read Chapter 4, Sections 4.2 & 4.3