

### **ME 231: Dynamics**

**Questions of the Day** 

What is the most important concept in Chapter 2? Time Derivative of a Vector

What is the most important concept in Chapter 6? Transformation of a Time Derivative

What is the most important concept in mechanics? Free Body Diagram

What is the most important concept in dynamics? **Equations of Motion** 

# **Outline for Today**

- Questions of the day
- Concept and calculation of dynamics?
- Velocity and acceleration of a point
- Absolute- and relative-motion analysis
- Locating the instantaneous center
- Velocity and acceleration of a body
- Inverse vs. forward dynamics
- Kinetics: cause of motion
- Direct application of Newton's 2<sup>nd</sup> Law
- Impulse-momentum principles
- Equations, equations, equations...
- Principle of work and kinetic energy
- Work vs. potential energy and work-energy equation
- Work of forces and couples & energy of rigid bodies
- Answer your questions!

Kinematics (Exam 1)

Kinetics (Exam 2)

Work-Energy (new stuff)

### **Concept: What is dynamics?**



# **Calculation: How Do We Use Dynamics?**

#### Newton's 2<sup>nd</sup> Law



ME 231: Dynamics

# **Velocity and Acceleration of a Point**

| Lecture                 | Velocity                                                                              | Acceleration                                                                                                                                          |
|-------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Rectilinear          | $v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$                 | $a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d^2s}{dt^2}$                                                             |
| 3. Curvilinear          | $\mathbf{v} = \dot{\mathbf{r}} = \dot{x}\mathbf{i} + \dot{y}\mathbf{j}$               | $\mathbf{a} = \dot{\mathbf{v}} = \ddot{\mathbf{r}} = \ddot{x}\mathbf{i} + \ddot{y}\mathbf{j}$                                                         |
| 4. Normal & Tangential  | $\mathbf{v} = v \mathbf{e}_{\mathbf{t}}$                                              | $\mathbf{a} = \frac{v^2}{\rho} \mathbf{e}_{\mathbf{n}} + \dot{v}  \mathbf{e}_{\mathbf{t}}$                                                            |
| 5. Polar<br>Coordinates | $\mathbf{v} = \dot{r}  \mathbf{e}_{\mathbf{r}} + r \dot{\theta}  \mathbf{e}_{\theta}$ | $\mathbf{a} = \left(\ddot{r} - r\dot{\theta}^2\right)\mathbf{e}_{\mathbf{r}} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right)\mathbf{e}_{\theta}$ |
| 7. Relative Motion      | $\mathbf{v}_A = \dot{\mathbf{r}}_A = \dot{\mathbf{r}}_B + \dot{\mathbf{r}}_{A/B}$     | $\mathbf{a}_A = \dot{\mathbf{v}}_A = \ddot{\mathbf{r}}_A = \ddot{\mathbf{r}}_B + \ddot{\mathbf{r}}_{A/B}$                                             |

# **Absolute-Motion Analysis**

- The method relates the *position* of a *point*, *A*, on a rigid body to the *angular position*, *θ*, of a *line* contained in the body
- The velocity and acceleration of point A are obtained in terms of the angular velocity, ω, and angular acceleration, α, of the rigid body





ME 231: Dynamics

## Locating the Instantaneous Center: Case #1

- Directions of absolute
   *velocities* for *A* and *B* are known (*and not parallel*)
- *Point A* has circular motion about some point on the *line perpendicular* to *velocity* v<sub>A</sub>
- **Point B** has a **similar** motion
- Point C is the instantaneous center of zero velocity (may lie on or off the body)





## Locating the Instantaneous Center: Case #2

- Directions of absolute
   *velocities* for *A* and *B* are
   known AND *parallel*
- The *line* joining the points is *perpendicular* to *velocity* v<sub>A</sub> and v<sub>B</sub>
- Instantaneous center found by direct proportions



## **Velocity and Acceleration of a Body**

| Lecture                      | Velocity                                                                                                                                                    | Acceleration                                                                                                                                                                                                                                                                                          |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9. Rotation                  | $\omega = \dot{\theta}$<br>$v = r\omega$<br>$\mathbf{v} = \mathbf{\omega} \times \mathbf{r}$                                                                | $ \begin{array}{l} \boldsymbol{\alpha} = \dot{\boldsymbol{\omega}} = \ddot{\boldsymbol{\theta}} \\ \boldsymbol{a}_t = r\boldsymbol{\alpha} \\ \mathbf{a}_t = \boldsymbol{\alpha} \times \mathbf{r} \\ \mathbf{a}_n = \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) \end{array} $ |
| 10. Absolute<br>Motion       | $\boldsymbol{\omega} = \dot{\boldsymbol{\theta}}$ $\boldsymbol{v} = \boldsymbol{r}\boldsymbol{\omega}$ $\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$ | $ \begin{array}{l} \boldsymbol{\alpha} = \dot{\boldsymbol{\omega}} = \ddot{\boldsymbol{\theta}} \\ \boldsymbol{a}_t = r\boldsymbol{\alpha} \\ \mathbf{a}_t = \mathbf{\alpha} \times \mathbf{r} \\ \mathbf{a}_n = \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r}) \end{array} $             |
| 11. Relative<br>Velocity     | $\mathbf{v}_A = \mathbf{v}_B + \mathbf{v}_{A/B}$ $\mathbf{v}_{A/B} = \mathbf{\omega} \times \mathbf{r}$                                                     |                                                                                                                                                                                                                                                                                                       |
| 13. Relative<br>Acceleration |                                                                                                                                                             | $\mathbf{a}_{A} = \mathbf{a}_{B} + (\mathbf{a}_{A/B})_{t} + (\mathbf{a}_{A/B})_{n}$ $(\mathbf{a}_{A/B})_{t} = \mathbf{\alpha} \times \mathbf{r} \ (\mathbf{a}_{A/B})_{n} = \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})$                                                                |
| 14. Rotating Axes            | $\mathbf{v}_A = \mathbf{v}_B + \mathbf{\omega} \times \mathbf{r} + \mathbf{v}_{rel}$                                                                        | $\mathbf{a}_{A} = \mathbf{a}_{B} + \dot{\mathbf{\omega}} \times \mathbf{r} + \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r}) + 2\mathbf{\omega} \times \mathbf{v}_{rel} + \mathbf{a}_{rel}$                                                                                                |

# **Outline for Today**

- Questions of the day
- Concept and calculation of dynamics?
- Velocity and acceleration of a point
- Absolute- and relative-motion analysis
- Locating the instantaneous center
- Velocity and acceleration of a body
- Inverse vs. forward dynamics
- Kinetics: cause of motion
- Direct application of Newton's 2<sup>nd</sup> Law
- Impulse-momentum principles
- Equations, equations, equations...
- Principle of work and kinetic energy
- Work vs. potential energy and work-energy equation
- Work of forces and couples & energy of rigid bodies
- Answer your questions!

Kinematics (Exam 1)

Kinetics (Exam 2)

Work-Energy (new stuff)

### **Inverse vs. Forward Dynamics**





ME 231: Dynamics

## **Kinetics: Cause of Motion?**

#### **Concept: What is kinetics?**



### **Direct Application of Newton's 2<sup>nd</sup> Law**





### Impulse-Momentum Principle: Angular

$$\int_{1}^{t_{2}} \Sigma \mathbf{M}_{O} dt = \int_{1}^{t_{2}} \dot{\mathbf{H}}_{O} dt$$

$$\left(\mathbf{H}_{O}\right)_{1} + \int_{1}^{t_{2}} \Sigma \mathbf{M}_{O} dt = \left(\mathbf{H}_{O}\right)_{2}$$

$$\mathbf{H}_{O} = \mathbf{r} \times m\mathbf{v}$$

$$\sum \mathbf{M}_{O} = \dot{\mathbf{H}}_{O}$$

 Integrate to describe the effect of the angular impulse ΣM<sub>0</sub>\*t on angular momentum H<sub>0</sub> of m about 0 over a finite period of time

$$m(v_{z}y - v_{y}z)_{1} + \int_{1}^{2} \Sigma(\mathbf{M}_{O})_{x} dt = m(v_{z}y - v_{y}z)_{2}$$
  
$$m(v_{x}z - v_{z}x)_{1} + \int_{1}^{2} \Sigma(\mathbf{M}_{O})_{y} dt = m(v_{x}z - v_{z}x)_{2}$$
  
$$m(v_{y}x - v_{x}y)_{1} + \int_{1}^{2} \Sigma(\mathbf{M}_{O})_{z} dt = m(v_{y}x - v_{x}y)_{2}$$

## **Equations, Equations, Equations...**

| Lecture                                                                                                | Equations                                                                                 |                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>18. Newton 2<sup>nd</sup> Law</li> <li>19. Eqs. of Motion</li> <li>20. Rectilinear</li> </ol> | $\sum \mathbf{F} = m\mathbf{a}$                                                           | $\sum F_{y} = ma_{y} = m\ddot{y}$                                                                                                                |
|                                                                                                        | $\sum F_x = ma_x = m\ddot{x}$                                                             | $\sum F_z = ma_z = m\ddot{z}$                                                                                                                    |
| 21. Curvilinear                                                                                        | $\sum F_r = ma_r$                                                                         | $\sum F_n = ma_n$                                                                                                                                |
|                                                                                                        | $\sum F_{\theta} = ma_{\theta}$                                                           | $\sum F_t = ma_t$                                                                                                                                |
| 27. Lin. Imp. Mom.                                                                                     | $\mathbf{G} = m\mathbf{v}$ $\Sigma \mathbf{F} = \dot{\mathbf{G}}$                         | $\mathbf{G}_1 + \int_1^{t_2} \Sigma \mathbf{F}  dt = \mathbf{G}_2$ $\Delta \mathbf{G} = 0$                                                       |
| 28. Ang. Imp. Mom.                                                                                     | $\mathbf{H}_{O} = \mathbf{r} \times m\mathbf{v}$                                          | $\left(\mathbf{H}_{O}\right)_{1} + \int_{1}^{2} \Sigma \mathbf{M}_{O} dt = \left(\mathbf{H}_{O}\right)_{2}$                                      |
|                                                                                                        | $\sum \mathbf{M}_{O} = \mathbf{H}_{O}$                                                    | $\Delta \mathbf{H}_{O} = 0$                                                                                                                      |
| 29. Sys. Imp. Mom.                                                                                     | $\mathbf{G} = m\overline{\mathbf{v}} \qquad \mathbf{H}_G = \sum (\mathbf{\rho}$           | $_{i} \times m_{i} \dot{\boldsymbol{\rho}}_{i} $ $\mathbf{H}_{P} = \mathbf{H}_{G} + \overline{\boldsymbol{\rho}} \times m \overline{\mathbf{v}}$ |
|                                                                                                        | $\mathbf{H}_{O} = \sum (\mathbf{r}_{i} \times m_{i} \mathbf{v}_{i})  \sum \mathbf{M}_{O}$ | $\mathbf{I}_G = \dot{\mathbf{H}}_G  \sum \mathbf{M}_P = \dot{\mathbf{H}}_G + \overline{\mathbf{\rho}} \times m\overline{\mathbf{a}}$             |

ME 231: Dynamics

### **Equations, Equations, Equations...**

#### Lecture

#### **Equations**

18. Newton 2<sup>nd</sup> Law  
22. Gen. Eqs. Mot. I  
23. Gen. Eqs. Mot. II
$$\sum \mathbf{M}_G = \dot{\mathbf{H}}_G$$
  
 $\dot{\mathbf{H}}_G = \sum \boldsymbol{\rho}_i \times \mathbf{F}_i$   
 $\sum \mathbf{F} = m\mathbf{a}$   
 $\sum \mathbf{M}_G = I_G \boldsymbol{\alpha}$   
 $\sum \mathbf{M}_O = I_O \boldsymbol{\alpha}$   
 $I_O = I_G \boldsymbol{\alpha}$ 25. Gen. Plane Mot. I  
26. Gen. Plane Mot. II  
 $I = \mathbf{M}_{I_O} = I_P \boldsymbol{\alpha} + \boldsymbol{\rho} \times m\mathbf{a}_P$   
 $\Sigma \mathbf{F} = m\mathbf{a}$   
 $\Sigma \mathbf{M}_G = I_G \boldsymbol{\alpha}$   
 $\mathbf{G} = m\overline{\mathbf{v}}$   
 $\mathbf{H}_G = I_G \boldsymbol{\omega}$   
 $\mathbf{H}_G = I_G \boldsymbol{\omega}$   
 $\mathbf{H}_P = I_G \boldsymbol{\omega} + mvd$   
 $H_O = I_O \boldsymbol{\omega}$ 31. Body Imp. Mom. $\Sigma \mathbf{F} = \dot{\mathbf{G}}$   
 $\Sigma \mathbf{M}_G = \dot{\mathbf{H}}_G$   
 $\mathbf{M}_G = \dot{\mathbf{H}}_G$   
 $\mathbf{M}_P = \dot{\mathbf{H}}_P$   
 $\Sigma \mathbf{M}_O = \dot{\mathbf{H}}_O$   
 $\mathbf{G}_1 + \int_{\mathbf{h}}^2 \Sigma \mathbf{F} \, dt = \mathbf{G}_2$   
 $(\mathbf{H}_G)_1 + \int_{\mathbf{h}}^2 \Sigma \mathbf{M}_G \, dt = (\mathbf{H}_G)_2$ 

# **Outline for Today**

- Questions of the day
- Concept and calculation of dynamics?
- Velocity and acceleration of a point
- Absolute- and relative-motion analysis
- Locating the instantaneous center
- Velocity and acceleration of a body
- Inverse vs. forward dynamics
- Kinetics: cause of motion
- Direct application of Newton's 2<sup>nd</sup> Law
- Impulse-momentum principles
- Equations, equations, equations...
- Principle of work and kinetic energy
- Work vs. potential energy and work-energy equation
- Work of forces and couples & energy of rigid bodies
- Answer your questions!

Kinematics (Exam 1)

Kinetics (Exam 2)

Work-Energy (new stuff) **Principle of Work and Kinetic Energy** 

- The *kinetic energy T* of a particle is  $T = \frac{1}{2}mv^2$
- Work done to bring it a particle from velocity v<sub>1</sub> to a velocity v<sub>2</sub>

$$U_{1-2} = \frac{1}{2} m \left( v_2^2 - v_1^2 \right)$$

 $U_{1-2} = T_2 - T_1 = \Delta T$  (work-energy eq.)

$$T_1 + U_{1-2} = T_2$$

### Work vs. Potential Energy

the **weight** 

$$U = -mg \int_{y_1}^{y_2} dy = -mg(y_2 - y_1)$$
  
• Recall: Work is done by  
the weight mg over an  
altitude change (y\_2-y\_1)

• **Potential energy** is simply the **opposite** sign (-work) because of its potential to be converted into energy

• The **work** of all external forces other than gravitational and spring forces is  $U'_{1-2}$ 

$$U'_{1-2} = \Delta T + \Delta V$$
 (work-energy eq.)

$$T_1 + V_1 + U_{1-2}' = T_2 + V_2$$





ME 231: Dynamics

### **Kinetic Energy for Rigid Bodies**



ME 231: Dynamics

### **Work-Energy Equation for Rigid Bodies**

Express weight and springs as doing work

 Work done to bring a rigid body from kinetic energy T<sub>1</sub> to a kinetic energy T<sub>2</sub>

$$T_1 + U_{1-2} = T_2$$

Express weight and springs by means of potential energy

• The **work** of all external forces other than gravitational and spring forces is

$$T_1 + V_1 + U_{1-2}' = T_2 + V_2$$

# **Outline for Today**

- Questions of the day
- Concept and calculation of dynamics?
- Velocity and acceleration of a point
- Absolute- and relative-motion analysis
- Locating the instantaneous center
- Velocity and acceleration of a body
- Inverse vs. forward dynamics
- Kinetics: cause of motion
- Direct application of Newton's 2<sup>nd</sup> Law
- Impulse-momentum principles
- Equations, equations, equations...
- Principle of work and kinetic energy
- Work vs. potential energy and work-energy equation
- Work of forces and couples & energy of rigid bodies
- Answer your questions!

Kinematics (Exam 1)

Kinetics (Exam 2)

Work-Energy (new stuff)

### **Final Exam General Breakdown**



- Review Chapters 1, 2, 3, 4, 5, 6, 7, & 8
- Review Lectures slides
  - <u>http://rrg.utk.edu/resources/ME231/lectures.html</u>
- Review Examples from class
  - <u>http://rrg.utk.edu/resources/ME231/examples.html</u>
- Final Exam on Monday (12/10) @ 8:00am here (in Min Kao 524)