Normal & Tangential \((n-t)\) Coordinates

Lecture 4

ME 231: Dynamics
A particle moves in a circular path of radius \(r = 0.8 \text{ m} \) with constant speed \(v \) of 2 m/s. The *velocity* undergoes a vector change \(\Delta v \) from \(A \) to \(B \).

Express the magnitude of \(\Delta v \) in terms of \(v \) and \(\Delta \theta \). Express the time interval \(\Delta t \) in terms of \(v \), \(\Delta \theta \), and \(r \). Obtain the magnitude of average acceleration by computing \(\Delta v / \Delta t \).
Outline for Today

- Question of the day
- N-T vector representation
- Velocity and acceleration
- Geometric interpretation
- Circular motion
- Answer your questions!
Recall: Possible Coordinate Systems

- Rectangular \((x, y, z)\)
- Polar \((r, \theta, z)\)
- Spherical \((R, \theta, \phi)\)
- Normal and Tangential \((n, t)\)
N-T Vector Representation

Path variables along the tangent \((t)\) and normal \((n)\)

- The \(n\)- and \(t\)-coordinates move along the path with the particle
- **Tangential** coordinate is parallel to the **velocity**
- The positive direction for the **normal** coordinate is toward the center of curvature
Velocity

\[ds = \rho \, d\beta \]

\[\mathbf{v} = \frac{ds}{dt} \mathbf{e}_t = v \mathbf{e}_t = \rho \dot{\beta} \mathbf{e}_t \]

- \(ds \) is the scalar displacement along the path (A→A’)
- Radius of curvature of the path is \(\rho \) and \(d\beta \) is the angle change
- \(\mathbf{e}_n \) is the unit vector in the *normal* direction
- \(\mathbf{e}_t \) is the unit vector in the *tangent* direction
Acceleration

\[ds = \rho \, d\beta \]

\[\mathbf{v} = \frac{ds}{dt} \, \mathbf{e}_t = \nu \, \mathbf{e}_t = \rho \hat{\beta} \, \mathbf{e}_t \]

\[\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d(\nu \, \mathbf{e}_t)}{dt} = \nu \, \dot{\mathbf{e}}_t + \dot{\nu} \, \mathbf{e}_t \]

\[\dot{\mathbf{e}}_t = \frac{d \mathbf{e}_t}{dt} = \left(\frac{d\beta}{dt} \right) \mathbf{e}_n = \hat{\beta} \, \mathbf{e}_n = \frac{\nu}{\rho} \, \mathbf{e}_n \]

\[\mathbf{a} = \frac{\nu^2}{\rho} \, \mathbf{e}_n + \dot{\nu} \, \mathbf{e}_t \]
Velocity and Acceleration: Exercise

A car passes through a dip in the road at \(A \) with constant speed \((v) \) giving it an acceleration \((a) \) equal to \(0.5g \). The radius of curvature \((\rho) \) at \(A \) is 100 m and the distance from the road to the mass center \(G \) of the car is 0.6 m.

Determine the speed \((v) \) of the car.

\[
a = \frac{v^2}{\rho} \mathbf{e}_n + \dot{v} \mathbf{e}_t
\]
Outline for Today

• Question of the day
• N-T vector representation
• Velocity and acceleration
• Geometric interpretation
• Circular motion
• Answer your questions!
Geometric Interpretation

- **Normal** component is always directed toward center of curvature
- **Tangent** component is directed toward $+t$ (or $-t$) direction if speed is increasing (or decreasing)

\[a = \frac{v^2}{\rho} \mathbf{e}_n + \dot{v} \mathbf{e}_t \]

Acceleration vectors for particle moving from A to B
Circular Motion

- Radius of curvature ρ becomes constant r
- Angle β is replaced by angle θ

\[
\begin{align*}
v &= \rho \dot{\beta} \\
a_n &= \frac{v^2}{\rho} \\
a_t &= \ddot{r} = \rho \dot{\beta}
\end{align*}
\]

\[
\begin{align*}
v &= r \dot{\theta} \\
a_n &= \frac{v^2}{r} = r \dot{\theta}^2 = v \dot{\theta} \\
a_t &= \dot{v} = r \ddot{\theta}
\end{align*}
\]
Circular Motion: Exercise

Particle P moves in a circular path shown.

Determine the magnitude of acceleration for:

(a) constant velocity 1.2 m/s
(b) velocity 1.2 m/s and increasing 2.4 m/s each second
(c) velocity 1.2 m/s and decreasing 4.8 m/s each second
Outline for Today

- Question of the day
- N-T vector representation
- Velocity and acceleration
- Geometric interpretation
- Circular motion
- Answer your questions!
For Next Time...

- Begin Homework #2 due next week (9/5)
- Read Chapter 2, Section 2.6