Normal \& Tangential ($n-t$) Coordinates

Lecture 4

ME 231: Dynamics

Question of the Day

A particle moves in a circular path of radius $r=0.8 \mathrm{~m}$ with constant speed (v) of $2 \mathrm{~m} / \mathrm{s}$. The velocity undergoes a vector change $\Delta \mathbf{v}$ from A to B.

Express the magnitude of $\Delta \mathrm{v}$ in terms of v and $\Delta \theta$. Express the time interval Δt in terms of v, $\Delta \theta$, and r. Obtain the magnitude of average acceleration by computing $\Delta v / \Delta t$.

Outline for Today

- Question of the day
- N-T vector representation
- Velocity and acceleration
- Geometric interpretation
- Circular motion
- Answer your questions!

Recall: Possible Coordinate Systems

- Rectangular (x, y, z)
- Polar ($\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{z}$)
- Spherical ($\boldsymbol{R}, \boldsymbol{\theta}, \phi)$
- Normal and Tangential $(\boldsymbol{n}, \boldsymbol{t})$

N-T Vector Representation

Path variables along the tangent (t) and normal (n)

- The n - and t-coordinates move along the path with the particle
- Tangential coordinate is parallel to the velocity
- The positive direction for the normal coordinate is toward the center of curvature

$$
d s=\rho d \beta
$$

$$
\mathbf{v}=\frac{d s}{d t} \mathbf{e}_{\mathrm{t}}=v \mathbf{e}_{\mathrm{t}}=\rho \dot{\beta} \mathbf{e}_{\mathrm{t}}
$$

- $d s$ is the scalar displacement along the path ($\mathrm{A} \rightarrow \mathrm{A}^{\prime}$)
- Radius of curvature of the path is ρ and $d \beta$ is the angle change
- \mathbf{e}_{n} is the unit vector in the normal direction
- \mathbf{e}_{t} is the unit vector in the tangent direction

Acceleration

$$
d s=\rho d \beta
$$

$\mathbf{v}=\frac{d s}{d t} \mathbf{e}_{\mathrm{t}}=v \mathbf{e}_{\mathrm{t}}=\rho \dot{\beta} \mathbf{e}_{\mathrm{t}}$

$$
\dot{\mathbf{e}}_{\mathrm{t}}=\frac{d \mathbf{e}_{\mathbf{t}}}{d t}=\left(\frac{d \beta}{d t}\right) \mathbf{e}_{\mathrm{n}}=\stackrel{\dot{\beta}}{ } \mathbf{e}_{\mathrm{n}}=\frac{v}{\rho} \mathbf{e}_{\mathrm{n}} \longrightarrow \mathbf{a}=\frac{v^{2}}{\rho} \mathbf{e}_{\mathrm{n}}+\dot{v} \mathbf{e}_{\mathrm{t}}
$$

Velocity and Acceleration: Exercise

A car passes through a dip in the road at \boldsymbol{A} with constant speed (v) giving it an acceleration (a) equal to 0.5 g . The radius of curvature (ρ) at \boldsymbol{A} is 100 m and the distance from the road to the mass center \boldsymbol{G} of the car is 0.6 m .

Determine the speed (v) of the car.

$$
\mathbf{a}=\frac{v^{2}}{\rho} \mathbf{e}_{\mathbf{n}}+\dot{v} \mathbf{e}_{\mathrm{t}}
$$

Outline for Today

- Question of the day
- N-T vector representation
- Velocity and acceleration
- Geometric interpretation
- Circular motion
- Answer your questions!

Geometric Interpretation

$$
\mathbf{a}=\frac{v^{2}}{\rho} \mathbf{e}_{\mathbf{n}}+\dot{v} \mathbf{e}_{\mathrm{t}}
$$

- Normal component is always directed toward center of curvature
- Tangent component is directed toward $+t$ (or $-t$) direction if speed is increasing

(or decreasing)
Acceleration vectors for particle moving from A to B

Circular Motion

- Radius of curvature ρ becomes constant r
- Angle β is replaced by angle θ

$$
\begin{aligned}
& v=\rho \dot{\beta} \\
& a_{n}=\frac{v^{2}}{\rho} \quad \longrightarrow \\
& a_{t}=\dot{W}=\rho \ddot{\beta} \longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& v=r \dot{\theta} \\
& a_{n}=\frac{v^{2}}{r}=r \dot{\theta}^{2}=v \dot{\theta} \\
& a_{t}=\dot{v}=r \ddot{\theta}
\end{aligned}
$$

Circular Motion: Exercise

Particle P moves in a circular path shown.

Determine the magnitude of acceleration for:
(a) constant velocity $1.2 \mathrm{~m} / \mathrm{s}$
(b) velocity $1.2 \mathrm{~m} / \mathrm{s}$ and increasing $2.4 \mathrm{~m} / \mathrm{s}$ each second
(c) velocity $1.2 \mathrm{~m} / \mathrm{s}$ and decreasing $4.8 \mathrm{~m} / \mathrm{s}$ each second

Outline for Today

- Question of the day
- N-T vector representation
- Velocity and acceleration
- Geometric interpretation
- Circular motion
- Answer your questions!

For Next Time...

- Begin Homework \#2 due next week (9/5)
- Read Chapter 2, Section 2.6

