Normal & Tangential (*n*-*t*) Coordinates

Lecture 4

ME 231: Dynamics

Question of the Day

A particle moves in a $v_A \Delta \theta$ circular path of radius r = 0.8 m with constant speed (v) of 2 m/s. The velocity undergoes a vector change Δv from A to B.

Express the magnitude of $\Delta \mathbf{v}$ in terms of \mathbf{v} and $\Delta \theta$. Express the time interval Δt in terms of \mathbf{v} , $\Delta \theta$, and \mathbf{r} . Obtain the magnitude of average acceleration by computing $\Delta \mathbf{v}/\Delta t$.

 $\Delta \mathbf{v}$

Question of the day

- N-T vector representation
- Velocity and acceleration
- Geometric interpretation
- Circular motion
- Answer your questions!

Recall: Possible Coordinate Systems

- Rectangular (x, y, z) =
- Polar (*r*, *θ*, *z*)
- Spherical (R, θ , ϕ)
- Normal and Tangential (n, t)

N-T Vector Representation

Path variables along the tangent (t) and normal (n)

- The *n* and *t*-coordinates move along the path with the particle
- Tangential coordinate is parallel to the velocity
- The positive direction for the *normal* coordinate is toward the center of curvature

- ds is the scalar displacement along the path $(A \rightarrow A')$
- Radius of curvature of the path is ρ and $d\beta$ is the angle change
- e_n is the unit vector in the *normal* direction
- **e**_t is the unit vector in the **tangent** direction

Velocity and Acceleration: Exercise

A car passes through a dip in the road at A with constant **speed** (v) giving it an **acceleration** (a) equal to 0.5g. The **radius of curvature** (ρ) at A is 100 m and the distance from the road to the mass center G of the car is 0.6 m.

$$\mathbf{a} = \frac{v^2}{\rho} \mathbf{e}_{\mathbf{n}} + \dot{v} \, \mathbf{e}_{\mathbf{t}}$$

Determine the **speed** (v) of the car.

- Question of the day
- N-T vector representation
- Velocity and acceleration
- Geometric interpretation
- Circular motion
- Answer your questions!

Geometric Interpretation

- Normal component is always directed toward center of curvature
- Tangent component is directed toward +t (or -t) direction if speed is increasing (or decreasing)
 Tangent component A Speed increasing (a)

Acceleration vectors for particle moving from A to B

Speed

decreasing

(b)

 $\mathbf{e}_{n} + \dot{v} \mathbf{e}_{t}$

B

Circular Motion

 $v = \rho \beta$

 $a_{t} = \dot{X} =$

 a_n

- Radius of curvature ρ becomes constant r
- Angle β is replaced by angle θ

- Question of the day
- N-T vector representation
- Velocity and acceleration
- Geometric interpretation
- Circular motion
- Answer your questions!

- Begin Homework #2 due next week (9/5)
- Read Chapter 2, Section 2.6