

ME 231: Dynamics

Question of the Day

A model airplane flies over an observer \boldsymbol{O} with constant speed. Determine the signs (,,+- or 0) for $r, \dot{r}, \ddot{r}, \theta, \dot{\theta}$, and $\ddot{\theta}$ at each position $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C}.

Outline for Today

- Question of the day
- Vector representation
- Time derivative of unit vectors
- Velocity and acceleration
- Geometric interpretation
- Circular motion
- Answer your questions!

Recall: Possible Coordinate Systems

- Rectangular (x, y, z)
- Polar ($\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{z}$)
- Spherical ($\boldsymbol{R}, \boldsymbol{\theta}, \phi)$
- Normal and Tangential (n, t)

Vector Representation

- Useful when motion is measured by a radial distance (r) and an angular position (θ)
- \mathbf{e}_{r} is the unit vector in the r-direction
- \mathbf{e}_{θ} is the unit vector in the θ-direction

Velocity

$$
\mathbf{v}=\dot{\mathbf{r}}=\frac{d\left(r \mathbf{e}_{\mathbf{r}}\right)}{d t}=\dot{r} \mathbf{e}_{\mathbf{r}}+r \dot{\mathbf{e}_{\mathbf{r}}} \quad \mathbf{v}=\dot{r} \mathbf{e}_{\mathbf{r}}+r \dot{\theta} \mathbf{e}_{\theta}
$$

- The r-component of \mathbf{v} is the rate at which \mathbf{r} stretches
- The θ-component of \mathbf{v} is due to the rotation θ

Path

Acceleration

$\dot{\mathbf{e}}_{\mathrm{r}}=\dot{\theta} \mathbf{e}_{\theta}$
$\mathbf{v}=\dot{r} \mathbf{e}_{\mathbf{r}}+r \dot{\theta} \mathbf{e}_{\theta}$
$\mathbf{a}=\dot{\mathbf{v}}=\left(\ddot{r} \mathbf{e}_{\mathbf{r}}+\dot{r} \dot{\mathbf{e}}_{r}\right)+\left(\dot{r} \dot{\theta} \mathbf{e}_{\theta}+r \ddot{\theta} \mathbf{e}_{\theta}+r \dot{\theta} \dot{\mathbf{e}}_{\theta}\right)$
$\mathbf{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \mathbf{e}_{\mathrm{r}}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \mathbf{e}_{\theta}-\dot{\mathbf{e}}_{\theta}=-\dot{\theta} \mathbf{e}_{r}$

Velocity and Acceleration:

 Exercise

 Exercise}

$$
\mathbf{v}=\dot{r} \mathbf{e}_{\mathbf{r}}+r \dot{\theta} \mathbf{e}_{\theta}
$$

$$
\mathbf{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \mathbf{e}_{\mathbf{r}}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \mathbf{e}_{\theta}
$$

A fire truck ladder extends at a constant rate of $6 \mathrm{in} / \mathrm{s}$ and elevates at a constant rate of $2 \% \mathrm{~s}$.

Determine the magnitude of velocity and acceleration of the fireman at \boldsymbol{A} when $\theta=50^{\circ}$ and $l=15 \mathrm{ft}$.

Outline for Today

- Question of the day
- Vector representation
- Time derivative of unit vectors
- Velocity and acceleration
- Geometric interpretation
- Circular motion
- Answer your questions!

Geometric
 Interpretation

- Magnitude change of v_{r} is $d \dot{r}$
- Direction change of v_{r} is $\dot{r} d \theta>a_{r}=\ddot{r}-r \dot{\theta}^{2}$
- Magnitude change of v_{θ} is $d(r \dot{\theta})-a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta}$
- Direction change of v_{θ} is $r \dot{\theta} d \theta$

Circular Motion

The radial distance (r) becomes constant

$$
\begin{array}{lll}
v_{r}=\dot{r} & \longrightarrow & v_{r}=0 \\
v_{\theta}=r \dot{\theta} \\
a_{r}=\ddot{r}-r \dot{\theta}^{2} & \longrightarrow & v_{\theta}=r \dot{\theta} \\
a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta} & \longrightarrow & a_{r}=-r \dot{\theta} \\
a_{\theta}=r \ddot{\theta}
\end{array}
$$

Circular Motion: Exercise

Particle P moves in a circular path shown.

Determine the magnitude of acceleration for:
(a) constant velocity $1.2 \mathrm{~m} / \mathrm{s}$
(b) velocity $1.2 \mathrm{~m} / \mathrm{s}$ and increasing $2.4 \mathrm{~m} / \mathrm{s}$ each second
(c) velocity $1.2 \mathrm{~m} / \mathrm{s}$ and decreasing

$$
a_{r}=-r \dot{\theta}^{2}
$$ $4.8 \mathrm{~m} / \mathrm{s}$ each second

$$
a_{\theta}=r \ddot{\theta}
$$

Outline for Today

- Question of the day
- Vector representation
- Time derivative of unit vectors
- Velocity and acceleration
- Geometric interpretation
- Circular motion
- Answer your questions!

For Next Time...

- Continue Homework \#2 due next Wednesday (9/5) at the beginning of class
- Read Chapter 2, Section 2.8
- Have a great Labor Day Holiday!

