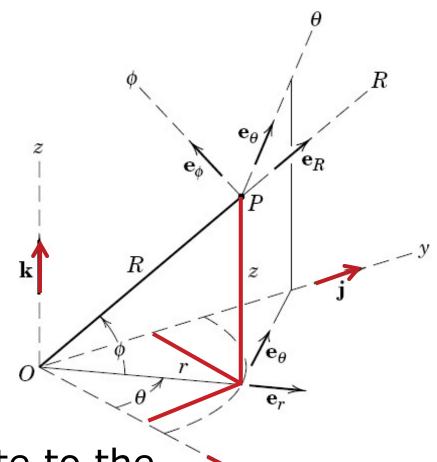


Question of the Day

A projectile launched from point o with initial **velocity** of magnitude of $v_0 = 600$ ft/s.

Compute the x-, y-, and z-components of velocity 20 seconds after launch.


- Question of the day
- Rectangular coordinates (x, y, z)
- Cylindrical coordinates (r, θ, z)
- Spherical coordinates (R, θ, ϕ)
- Answer your questions!

Rectangular coordinates (x, y, z)

$$\mathbf{R} = x \, \mathbf{i} + y \, \mathbf{j} + z \, \mathbf{k}$$

$$\mathbf{v} = \dot{\mathbf{R}} = \dot{x}\,\mathbf{i} + \dot{y}\,\mathbf{j} + \dot{z}\,\mathbf{k}$$

$$\mathbf{a} = \dot{\mathbf{v}} = \ddot{\mathbf{R}} = \ddot{x}\,\mathbf{i} + \ddot{y}\,\mathbf{j} + \ddot{z}\,\mathbf{k}$$

Simply add z-coordinate to the two-dimensional expressions

Rectangular coordinates (x, y, z): Exercise

A particle moving in three-dimensions has a **position** vector (\mathbf{r}) as a function of **time** (t) with coordinates given by

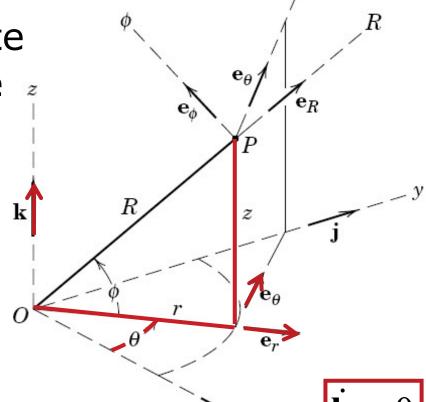
$$x(t) = 30 \cos(2t), \ y(t) = 40 \sin(2t), \ z(t) = 20t + 3t^2$$

where **r** is measured in millimeters and **t** is in seconds.

Determine the magnitude of the **velocity** (\mathbf{v}) and the **acceleration** (\mathbf{a}) at time t = 2 s.

- Question of the day
- Rectangular coordinates (x, y, z)
- Cylindrical coordinates (r, θ, z)
- Spherical coordinates (R, θ, ϕ)
- Answer your questions!

Cylindrical coordinates (r, θ, z)


$$\dot{\mathbf{e}}_{\mathbf{r}} = \dot{\theta} \, \mathbf{e}_{\theta}$$

$$\dot{\mathbf{e}}_{\theta} = -\dot{\theta} \, \mathbf{e}_{\theta}$$

Simply add z-coordinate to the polar-coordinate expressions

$$\mathbf{R} = r \mathbf{e}_r + z \mathbf{k}$$

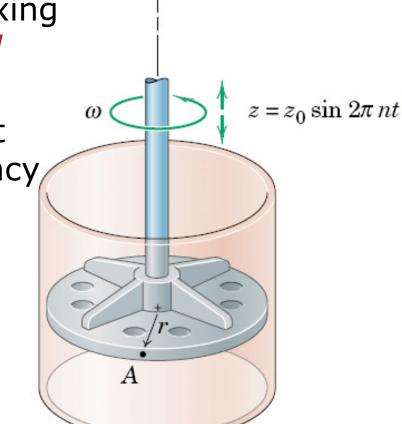
$$\mathbf{v} = \dot{\mathbf{R}} = \dot{r} \, \mathbf{e}_{\mathbf{r}} + r \dot{\theta} \, \mathbf{e}_{\theta} + \dot{z} \, \mathbf{k}$$

$$\mathbf{a} = \dot{\mathbf{v}} = \ddot{\mathbf{R}} = \left(\ddot{r} - r\dot{\theta}^2\right)\mathbf{e}_{\mathbf{r}} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right)\mathbf{e}_{\theta} + \ddot{z}\,\mathbf{k}$$

Cylindrical coordinates (r, θ, z) : Exercise

$$\mathbf{a} = (\ddot{r} - r\dot{\theta}^2)\mathbf{e}_{\mathbf{r}} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\mathbf{e}_{\theta} + \ddot{z}\mathbf{k}$$

The rotating element of a mixing chamber has a periodic **axial**


movement $z = z_0 \sin(2\pi nt)$

while rotating at the constant

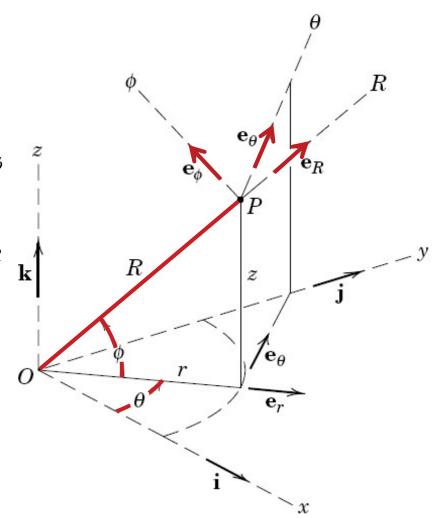
angular velocity . Frequency

n is constant.

Determine the magnitude of the **acceleration** of point A on the rim of radius r.

- Question of the day
- Rectangular coordinates (x, y, z)
- Cylindrical coordinates (r, θ, z)
- Spherical coordinates (R, θ, ϕ)
- Answer your questions!

Spherical coordinates (R, θ, ϕ)


$$\mathbf{R} = R \mathbf{e}_R$$

$$\mathbf{v} = \dot{\mathbf{R}} = \dot{R} \, \mathbf{e}_R + R \dot{\theta} \cos \phi \, \mathbf{e}_\theta + R \dot{\phi} \, \mathbf{e}_\phi$$

$$\mathbf{a} = \dot{\mathbf{v}} = \ddot{\mathbf{R}} = \left(\ddot{R} - R\dot{\phi}^2 - R\dot{\theta}^2 \cos^2 \phi \right) \mathbf{e}_R$$

$$\mathbf{a} = \dot{\mathbf{v}} = \ddot{\mathbf{R}} = \left(\ddot{R} - R\dot{\phi}^2 - R\dot{\theta}^2\cos^2\phi\right)\mathbf{e}_R$$
$$+ \left(\frac{\cos\phi}{R}\frac{d(R^2\dot{\theta})}{dt} - 2R\dot{\theta}\dot{\phi}\sin\phi\right)\mathbf{e}_{\theta}$$

$$+ \left(\frac{1}{R} \frac{d(R^2 \dot{\phi})}{dt} + R \dot{\theta}^2 \sin \phi \cos \phi\right) \mathbf{e}_{\phi}$$

Spherical coordinates (R, θ, ϕ) : Exercise

 $\mathbf{v} = R \mathbf{e}_{r} + R \theta \cos \phi \mathbf{e}_{\theta} + R \dot{\phi} \mathbf{e}_{\phi}$

A firetruck ladder rotates with constant angular velocity $\Omega = 10$ °/s, elevates

12 - 10 %, elevates

with a constant angular velocity

 $\phi = 7$ °/s, and **extends** with a constant rate 0.5 m/s.

When $\phi = 30^{\circ}$ and the ladder is 15 m long, determine the magnitude of the **velocity** of the end **B** of the ladder.

- Question of the day
- Rectangular coordinates (x, y, z)
- Cylindrical coordinates (r, θ, z)
- Spherical coordinates (R, θ, ϕ)
- Answer your questions!

For Next Time...

- Homework #2 was due at the beginning of class
- Begin working on Homework #3 due Wednesday (9/12) at the beginning of class

• Read Chapter 2, Section 2.7