Lecture 7
ME 231: Dynamics

Question of the Day

Passengers in jet A flying east at a speed of $800 \mathrm{~km} / \mathrm{h}$ observe jet B moving away at a 60° angle although its nose is pointed in the 45° direction.

Determine the true velocity of B in an earthfixed coordinate system.

Outline for Today

- Question of the day
- Choice of inertial coordinate system
- Vector representation
- Additional considerations
- Answer your questions!

Choice of Inertial Coordinate System

Moving coordinate systems are measured with respect to an inertial coordinate system whose motion is negligible.

Vector Representation

- Absolute position of \boldsymbol{B} is defined in an inertial coordinate system $X-\boldsymbol{Y}$
- Attach a set of translating (non-rotating) axes $x-y$ to particle \boldsymbol{B} and define the position of \boldsymbol{A}
- Define position of "A relative to $B^{\prime \prime}(" A / B$ ") in $x-y$

Vector Representation: Exercise

$$
\mathbf{r}_{A}=\mathbf{r}_{B}+\mathbf{r}_{A / B}
$$

$$
\mathbf{v}_{A}=\dot{\mathbf{r}}_{A}=\dot{\mathbf{r}}_{B}+\dot{\mathbf{r}}_{A / B}
$$

Train A travels with constant speed $v_{A}=120 \mathrm{~km} / \mathrm{h}$. Anticipating the need to stop, car \boldsymbol{B} decreases its speed of $90 \mathrm{~km} / \mathrm{h}$ at the rate of $3 \mathrm{~m} / \mathrm{s}^{2}$.

Determine the velocity and acceleration of the train relative to the car.

Outline for Today

- Question of the day
- Choice of inertial coordinate system
- Vector representation
- Additional considerations
- Answer your questions!

Additional Considerations

$$
\begin{gathered}
\mathbf{r}_{B}=\mathbf{r}_{A}+\mathbf{r}_{B / A} \\
\mathbf{v}_{B}=\dot{\mathbf{r}}_{B}=\dot{\mathbf{r}}_{A}+\dot{\mathbf{r}}_{B / A} \\
\mathbf{a}_{B}=\dot{\mathbf{v}}_{B}=\ddot{\mathbf{r}}_{B}=\ddot{\mathbf{r}}_{A}+\ddot{\mathbf{r}}_{B / A} \\
\end{gathered}
$$

- Selection of the moving point (e.g., \boldsymbol{A} or \boldsymbol{B}) is arbitrary
- Absolute position of A is defined in an inertial coordinate system $X-Y$
- Attach a set of translating (non-rotating) axes $x-y$ to particle \boldsymbol{A} and define the position of \boldsymbol{B}

Another Exercise

$$
\mathbf{r}_{B}=\mathbf{r}_{A}+\mathbf{r}_{B / A}
$$

$$
\mathbf{v}_{B}=\dot{\mathbf{r}}_{B}=\dot{\mathbf{r}}_{A}+\dot{\mathbf{r}}_{B / A}
$$

$\mathbf{a}_{B}=\dot{\mathbf{v}}_{B}=\ddot{\mathbf{r}}_{B}=\ddot{\mathbf{r}}_{A}+\ddot{\mathbf{r}}_{B / A}$
Car A has a speed $v_{A}=100 \mathrm{~km} / \mathrm{h}$, which is increasing at the rate of $8 \mathrm{~km} / \mathrm{h}$ each second. Car \boldsymbol{B} has a speed $v_{B}=$ $100 \mathrm{~km} / \mathrm{h}$, around the turn and is slowing down at the rate of $8 \mathrm{~km} / \mathrm{h}$ each second.

Determine the acceleration that car \boldsymbol{B} appears to have to an observer in car A.

Outline for Today

- Question of the day
- Choice of inertial coordinate system
- Vector representation
- Additional considerations
- Answer your questions!

For Next Time...

- Begin Homework \#3 due next week (9/12)
- Read Chapter 2, Section 2.7 again

