

Constrained Motion of Connected Particles

Lecture 8

ME 231: Dynamics

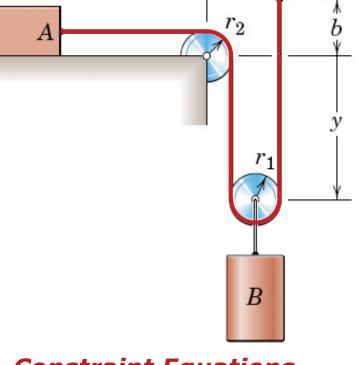
Question of the Day

How many **degrees of freedom** does a computer mouse have?

degrees of freedom are translations and/or rotations that specify the position and/or orientation of a system

What *constraints* are introduced when we use it?

constraints are restrictions on translations and/or rotations that limit the position and/or orientation of a system

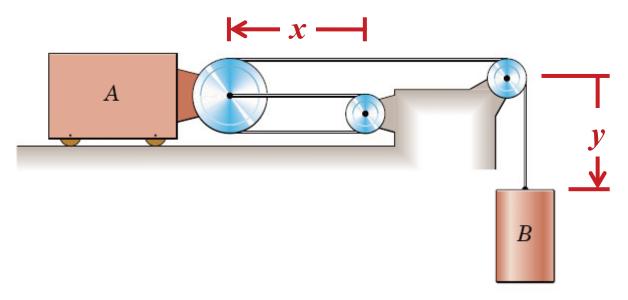


Outline for Today

- Question of the day
- One degree of freedom
- Two degrees of freedom
- Answer your questions!

One Degree of Freedom

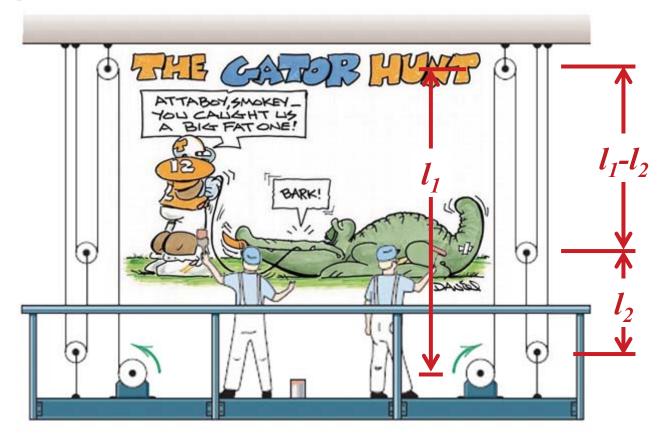
- Simple system of two interconnected particles
- With L, r₂, r₁, and b are constant
- Horizontal motion (x) of
 A is twice the vertical motion (y) of B
- Only one variable (x or y) is needed to specify the positions of all parts of the system


Constraint Equations

$$L = x + \frac{\pi}{2}r_2 + 2y + \pi r_1 + b$$

$$0 = \dot{x} + 2\dot{y} \qquad 0 = v_A + 2v_B$$

$$0 = \ddot{x} + 2\ddot{y}$$
 $0 = a_A + 2a_B$


One Degree of Freedom: Exercise

Block A has a **velocity** of 3.6 ft/s to the right.

Determine the **velocity** of cylinder B.

One Degree of Freedom: Another Exercise

The scaffold is being raised. Each winch drum has a diameter of 200 mm and turns at the rate of 40 rpm.

Determine the upward **velocity** of the scaffold.

Outline for Today

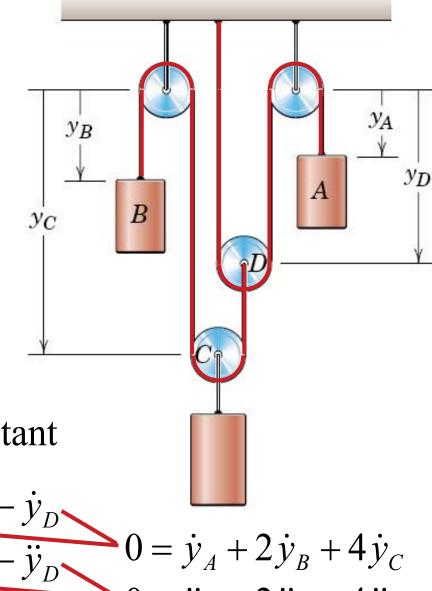
- Question of the day
- One degree of freedom
- Two degrees of freedom
- Answer your questions!

Two Degrees of Freedom

Position of lower cylinder depends on two variables $(y_A \text{ and } y_B)$

Constraint Equations

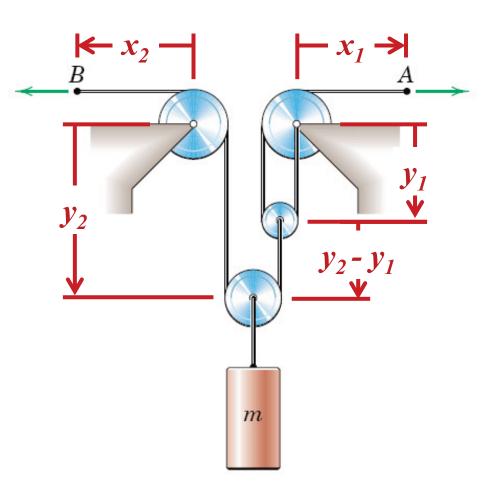
$$L_A = y_A + 2y_D + \text{constant}$$


$$L_B = y_B + y_C + (y_C - y_D) + \text{constant}$$

$$0 = \dot{y}_{A} + 2\dot{y}_{D} \qquad 0 = \dot{y}_{B} + 2\dot{y}_{C} - \dot{y}_{D}$$

$$0 = \ddot{y}_{A} + 2\ddot{y}_{D} \qquad 0 = \ddot{y}_{B} + 2\ddot{y}_{C} - \ddot{y}_{D} \qquad 0 = \dot{y}_{A} + 2\dot{y}_{B} + 4\dot{y}_{C}$$

$$0 = \ddot{y}_{A} + 2\ddot{y}_{B} + 4\ddot{y}_{C}$$


$$0 = \ddot{y}_{A} + 2\ddot{y}_{B} + 4\ddot{y}_{C}$$

$$0 = \dot{y}_A + 2\dot{y}_B + 4\dot{y}_C$$

$$0 = \ddot{y}_A + 2\ddot{y}_B + 4\ddot{y}_C$$

Two Degrees of Freedom: Exercise

Each of the cables at A and
B is given a velocity of
2 m/s in the direction of the arrow.

Determine the upward **velocity** of load **m**.

Outline for Today

- Question of the day
- One degree of freedom
- Two degrees of freedom
- Answer your questions!

For Next Time...

- Continue Homework #3 due Thursday(9/13)
- Read Chapter 6, Section 6.1