Constrained Motion of Connected Particles

Lecture 8

ME 231: Dynamics

Question of the Day

How many degrees of freedom does a computer mouse have?
degrees of freedom are translations and/or rotations that specify the position and/or orientation of a system

What constraints are introduced when we use it?
constraints are restrictions on translations and/or rotations that limit the position and/or orientation of a system

Outline for Today

- Question of the day
- One degree of freedom
- Two degrees of freedom
- Answer your questions!

One Degree of Freedom

- Simple system of two interconnected particles
- With L, r_{2}, r_{1}, and b are constant
- Horizontal motion (x) of A is twice the vertical motion (y) of \boldsymbol{B}
- Only one variable (x or y) is needed to specify the positions of all parts of the system

Constraint Equations

$$
L=x+\frac{\pi}{2} r_{2}+2 y+\pi r_{1}+b
$$

$$
0=\dot{x}+2 \dot{y} \quad 0=v_{A}+2 v_{B}
$$

$$
0=\ddot{x}+2 \ddot{y} \quad 0=a_{A}+2 a_{B}
$$

One Degree of Freedom: Exercise

Block A has a velocity of $3.6 \mathrm{ft} / \mathrm{s}$ to the right.
Determine the velocity of cylinder \boldsymbol{B}.

One Degree of Freedom: Another Exercise

The scaffold is being raised. Each winch drum has a diameter of 200 mm and turns at the rate of 40 rpm .

Determine the upward velocity of the scaffold.

Outline for Today

- Question of the day
- One degree of freedom
- Two degrees of freedom
- Answer your questions!

Two Degrees of Freedom

Position of lower cylinder depends on two variables (y_{A} and y_{B})

Constraint Equations
$L_{A}=y_{A}+2 y_{D}+$ constant
$L_{B}=y_{B}+y_{C}+\left(y_{C}-y_{D}\right)+$ constant
$\begin{aligned} & 0=\dot{y}_{A}+2 \dot{y}_{D} \quad 0=\dot{y}_{B}+2 \dot{y}_{C}-\dot{y}_{D} \\ & 0=\ddot{y}_{A}+2 \ddot{y}_{D} \longrightarrow 0=\ddot{y}_{B}+2 \ddot{y}_{C}-\ddot{y}_{D}\end{aligned} 0=\dot{y}_{A}+2 \dot{y}_{B}+4 \dot{y}_{C}$ $0=\ddot{y}_{A}+2 \ddot{y}_{B}+4 \ddot{y}_{C}$

Two Degrees of Freedom: Exercise

Each of the cables at A and B is given a velocity of $2 \mathrm{~m} / \mathrm{s}$ in the direction of the arrow.

> Determine the upward velocity of load \boldsymbol{m}.

Outline for Today

- Question of the day
- One degree of freedom
- Two degrees of freedom
- Answer your questions!

For Next Time...

- Continue Homework \#3 due Thursday(9/13)
- Read Chapter 6, Section 6.1

