OPTIMIZING ROWING PERFORMANCE

LAUREN SCHROEDER & MCDARRAGH MINNOCK

BME 473 - NOVEMBER 17, 2016
GOALS

• IMPROVE ROWING PERFORMANCE
• IDENTIFY THE OPTIMAL RATIO BETWEEN OAR SHAFT STIFFNESS AND OAR LENGTH
• DECREASE POWER LOST AT THE OAR BLADE
ROWING EQUIPMENT
ROWING TECHNIQUE

THE ROWING STROKE SEQUENCE:

A. B. C. D.

BLADE PATH THROUGH THE WATER:
EVOLUTION OF OAR AND BLADE DESIGNS

1847 - SQUARE BLADE
1960 - MACON BLADE
1977 - INTRODUCED CARBON FIBER
1991 - ULTRA LIGHT CARBON FIBER
1991 - CLEAVER (BIG BLADE)
1996 - INTRODUCED THE ADJUSTABLE LENGTH SYSTEM FOR OARS
1997 - SMOOTHIE BLADE
2006 - FAT2 BLADE
THE MODERN OAR

- Composite oar shafts made up of carbon fiber reinforced polymers
- Stiffer and 60% lighter than wooden oars
 - Extra soft - 20% High Modulus Carbon Fiber
 - Medium - 40% High Modulus Carbon Fiber
 - Heavily loaded near oar sleeve
- Cleaver blade
 - Asymmetrical shape
 - Minimizes vertical movement
HYDRODYNAMICS OF ROWING

- **HYDRO-LIFT FORCE**
 - Increases with greater catch angle of attack
 - Contributes ~56% of blade propulsive forces

- **DRAG FORCES**
 - Stabilizes blade in water
 - Middle of drive phase
 - Contributes ~44% of blade propulsive forces

- **FORCE COEFFICIENTS**
 - Oar blade shape
 - Angle of attack between chord line and fluid flow

- **ANGLE OF ATTACK (AOA)**
 - Drag coefficient increases with AOA close to 90°
 - Middle of drive phase
 - Lift coefficient reaches max around 40-45°
 - Catch angle of attack

\[
\text{Drag: } F_{BD} = \frac{1}{2} \rho A c_D v_B^2
\]

\[
\text{Lift: } F_{BL} = \frac{1}{2} \rho A c_L v_B^2
\]
PREVIOUS STUDIES

VOLKER NOLTE (2009)

• ARE SHORTER OARS MORE EFFECTIVE?

 • ORIGINAL THEORY. LONGER OAR PRODUCES LARGER BLADE FORCE

 • HANDLE FORCE, BLADE FORCE, OAR LENGTH, AND POWER

 • $F_H \propto F_B$

 • $F_B \propto (L_1/L_2)$

 • $F_H \propto P \Rightarrow$ INCREASES STRESS ON ROWER

 • SCULLING OARLOCK FORCES AVERAGE BETWEEN 465-600 N OVER 500 M AT RACE PACE

 • $\uparrow F_B$ WHILE MAINTAINING F_H

 • HIGHER BOAT VELOCITY ONLY ACHIEVED WITH HIGHER BLADE FORCE

 • DECREASE OUTBOARD LENGTH AND INCREASE LIFT COEFFICIENT OF THE BLADE
PREVIOUS STUDIES

HOFFMIESTER ET AL. (2010)

• ENERGY LOSS AT THE BLADES
 • HIGH POWER LOSS (>30%) DUE TO PROPULSIVE FORCE ON BLADE

• ENERGY LOSS UNDERESTIMATIONS
 • ASSUMING OAR RIGIDITY AND NEGLECTING PARALLEL BLADE FORCE
 • NON-ZERO PARALLEL BLADE FORCE WHEN BLADE IS PERPENDICULAR TO BOAT

• NEED TO OPTIMIZE OAR DESIGN TO DECREASE POWER LOSS
 • DO NOT ASSUME OAR RIGIDITY
 • PARALLEL BLADE FORCE
 • “DELTA WING” BLADE DESIGN
PREVIOUS RESEARCH

CAPLAN & GARDNER (2007C)

• OPTIMIZING OAR BLADE DESIGN
 • MAXIMIZE BLADE’S ABILITY TO GENERATE LIFT THROUGHOUT ROWING STROKE
 • BLADE CURVATURE
 • INCREASING CIRCULATION OF FLUID BOUNDARY LAYER
 • ACTING AS A “DELTA WING”
 • BIG BLADE SIGNIFICANTLY GREATER LIFT COEFFICIENT

\[F_{\text{lift}} = F_T \sin \alpha + F_N \cos \alpha \]
\[F_{\text{Drag}} = F_N \sin \alpha - F_T \cos \alpha \]
OUR PROPOSAL

• TAKE WHAT IS KNOWN ABOUT:
 • OAR LENGTH
 • INFLUENCES ON LIFT AND DRAG FORCES
 • BLADE DESIGN AND LIFT COEFFICIENT
 • ENERGY LOSS AT BLADES

• FIND THE OPTIMAL RATIO BETWEEN OAR STIFFNESS, OAR LENGTH, AND BLADE DESIGN THAT WILL INCREASE PERFORMANCE IN ROWING

• INTRODUCE “MATCHING” OAR LENGTH TO INDIVIDUAL ROWER
PROPOSED HYPOTHESES

• OPTIMAL COMBINATION WILL BE MATCHED OAR LENGTH AT MEDIUM STIFFNESS
 • BLADE FORCE WILL INCREASE
 • LIFT COMPONENT WILL INCREASE
 • POWER LOST AT BLADES WILL DECREASE
PROPOSED RESEARCH

• EIGHT ELITE FEMALE ROWERS, PROFICIENT IN SCULLING
• COMBINATION OF OAR SHAFT STIFFNESS AND OAR LENGTH
 • STIFFNESS LEVELS
 • SOFT, MEDIUM, STIFF
 • OAR LENGTH
 • SHORT, MEDIUM, LONG
 • MATCHED
 • HATCHET BLADE
• DEFLECTION ANGLE
 • MEASURES THE DEGREE OF DEFLECTION THE BLADE BENDS RELATIVE TO THE OAR SLEEVE
 • STATIC LOAD OF 98.1 N PLACED AT THE BLADE AND SHAFT JUNCTION
 • CLAMPS AT HANDLE AND SLEEVE
 • MEASURE DEFLECTION ANGLE
PROPOSED PROTOCOL

• SINGLE-BLINDED
 • OAR CONFIGURATIONS UNKNOWN TO ROWER

• OAR SETUP AND CALIBRATION
 • TWO CUSTOM OAR SHAFT STRAIN GAUGES (LOCATED AT Y1 & Y4)
 • CUSTOM OARLOCK STRAIN-GAUGE FORCE TRANSDUCERS
 • CABLE ATTACHED TO BLADE
 • EXTERNALLY APPLIED FORCE (0-150N) BY EXPERIMENTER

• ON-WATER EXPERIMENT
 • 500M DISTANCE ROWED (30-32 STROKES PER MINUTE)
 • INSTRUMENTED RACING SINGLE SCULL
 • BLADE VELOCITY
 • LIFT AND DRAG FORCES (FROM BLADE FORCE VECTOR)
 • POWER LOSS TO WATER
EXPECTED RESULTS

• WHAT OAR SHAFT STIFFNESS VALUE INCREASES PERFORMANCE?
 • MEDIUM STIFFNESS WILL PRODUCE OPTIMAL PERFORMANCE
 • WILL OPTIMIZE THE LIFT FORCE THROUGHOUT THE STROKE

• DOES “MATCHING” OARS IMPROVE PERFORMANCE?
 • FOR SCULLING, “MATCHING” OARS WILL INCREASE PERFORMANCE
 • LIFT FORCE INCREASED
 • DRAG FORCE DECREASED
 • NEED TO RECONSIDER FOR LARGER TEAMS (4 & 8)
QUESTIONS??
<table>
<thead>
<tr>
<th>Oar Length</th>
<th>Soft</th>
<th>Medium</th>
<th>Rigid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>281 cm</td>
<td>281 cm</td>
<td>281 cm</td>
</tr>
<tr>
<td>Medium</td>
<td>284 cm</td>
<td>284 cm</td>
<td>284 cm</td>
</tr>
<tr>
<td>Long</td>
<td>287 cm</td>
<td>287 cm</td>
<td>287 cm</td>
</tr>
<tr>
<td>Matched</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>