Relative Acceleration
Lecture 13
ME 231: Dynamics
The *acceleration* of the cart is 4 \(\text{ft/s}^2 \) to the right.

Determine the *angular acceleration* of the wheel so that *point A* on the top of the rim has a *horizontal component* of *acceleration* equal to *zero*.
Outline for Today

- Question of the day
- Relative acceleration due to rotation
- Interpretation of $a_A = a_B + a_{A/B}$
- Solution of relative-acceleration eq.
- Answer your questions!

- What about next week?
Recall: Relative Motion

\[\mathbf{r}_A = \mathbf{r}_B + \mathbf{r}_{A/B} \]

\[\mathbf{v}_A = \dot{\mathbf{r}}_A = \dot{\mathbf{r}}_B + \dot{\mathbf{r}}_{A/B} \]

\[\mathbf{a}_A = \ddot{\mathbf{v}}_A = \ddot{\mathbf{r}}_A = \ddot{\mathbf{r}}_B + \ddot{\mathbf{r}}_{A/B} \]

- Absolute position of \(B \) is defined in an inertial coordinate system \(X-Y \)
- Attach a set of translating (non-rotating) axes \(x-y \) to particle \(B \) and define the position of \(A \)
- Define position of “\(A \ relative to \ B \)” (“\(A/B \)”’) in \(x-y \)
Relative Acceleration Due to Rotation

\[\mathbf{a}_A = \mathbf{a}_B + \mathbf{a}_{A/B} \]

\[\mathbf{v}_{A/B} = \dot{\mathbf{r}} = \omega \times \mathbf{r} \]

\[\mathbf{a}_{A/B} = \dot{\mathbf{v}}_{A/B} = \omega \times \dot{\mathbf{r}} + \dot{\omega} \times \mathbf{r} \]

From *translating* (non-rotating) axes \(x-y \) attached to point \(B \), the acceleration is a simply due to *circular motion* about \(B \)
Interpretation of Relative-Acceleration Eq.

Translational portion

\[\mathbf{a}_A = \mathbf{a}_B + (\mathbf{a}_{A/B})_t + (\mathbf{a}_{A/B})_n \]

Rotational portion

\[(\mathbf{a}_{A/B})_t = \mathbf{a} \times \mathbf{r} \]

\[(\mathbf{a}_{A/B})_n = \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r}) \]
Outline for Today

• Question of the day
• Relative acceleration due to rotation
• Interpretation of $\mathbf{a}_A = \mathbf{a}_B + \mathbf{a}_{A/B}$
• Solution of relative-acceleration eq.
• Answer your questions!

• What about next week?
Solution of Relative-Acceleration Eq.: Exercise

A truck has forward \textit{acceleration} \(a = 12 \text{ ft/s}^2 \) rolling without slipping its 24” tires.

Determine the \textit{velocity} of the truck when point \(P \) in the \textit{position} shown will have \textit{zero horizontal component} of \textit{acceleration}.
Solution of Relative-Acceleration Eq.: Exercise

Calculate the *angular acceleration* of the plate, where \(OA \) has a constant *angular velocity* \(\omega_{OA} = 4 \text{ rad/s} \) and \(\theta = 60^\circ \) for both links.
Solution of Relative-Acceleration Eq.: Exercise

Link OA has constant angular velocity $\omega = 4 \text{ rad/s}$. Determine the angular acceleration α_{AB} of link AB when OA is parallel to the horizontal axis through B.
Outline for Today

• Question of the day
• Relative acceleration due to rotation
• Interpretation of $a_A = a_B + a_{A/B}$
• Solution of relative-acceleration eq.
• Answer your questions!

• What about next week?
What about next week?

<table>
<thead>
<tr>
<th>Month</th>
<th>Monday</th>
<th>Wednesday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>August</td>
<td></td>
<td>15 Overview & Intro. 1.1 - 1.3</td>
<td>17 Rectilin. Motion 2.1 - 2.2</td>
</tr>
<tr>
<td></td>
<td>20 Curvilinear Motion 2.3 - 2.4</td>
<td>22 Normal, Tangential 2.5</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>31 Polar 2.6</td>
</tr>
<tr>
<td>September</td>
<td>Labor Day (no class)</td>
<td>5 Space Motion 2.8</td>
<td>7 Relative Motion 2.7</td>
</tr>
<tr>
<td></td>
<td>3 Constrained Motion 2.7</td>
<td>7 Relative Motion 2.7</td>
<td>14 Absolute Motion 6.1</td>
</tr>
<tr>
<td></td>
<td>10 Relative Velocity 6.2</td>
<td>12 Rotation 6.1</td>
<td>21 Relative Acceleration 6.3</td>
</tr>
<tr>
<td></td>
<td>17 Relative Acceleration 6.3</td>
<td>19 Instant Center 6.2</td>
<td>28 Rotating Axes 6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26 Rotating Axes 6.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 Kinematics Review (Ch. 1, 2. & 6)</td>
<td>3 Exam 1 (Ch. 1, 2, & 6)</td>
<td>5 Newton’s 2nd Law 3.1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
For Next Time...

- Continue Homework #5 due next Wednesday (9/26)
- Read Chapter 6, Sections 6.3 and 6.4