Linear Impulse and Momentum
Lecture 27
ME 231: Dynamics
An ice-hockey puck with mass of 0.20 kg has a velocity of 12 m/s before being struck by the stick. After a 0.04 s impact, the puck moves in the new direction shown with a velocity of 18 m/s.

Determine the magnitude of average force F exerted by the stick on the puck during contact.
Outline for Today

• Question of the day
• From $\mathbf{F}=ma$ to impulse and momentum
• Linear impulse and momentum
• Linear impulse-momentum principle
• Conservation of linear momentum
• Answer your questions!
Recall: Possible Solutions to Kinetics Problems

- Direct application of *Newton’s 2nd Law*
 - force-mass-acceleration method
 - Chapters 3 and 7
- Use of *impulse* and *momentum* methods
 - Chapters 5 and 8
- Use of *work* and *energy* principles
 - Chapter 4
From $F=ma$ to impulse and momentum

- **Integrate** equations of motion with respect to **time**
- **Linear impulse** $(F*t)$ on m equals change in **linear momentum** (G) of m
- Facilitates the **solution** of problems where **forces** act over **specified time** interval or during extremely **short periods of time** (e.g., **impact**)

\[\sum F = ma \]

\[\int_{t_1}^{t_2} \sum F \, dt = \int_{t_1}^{t_2} \frac{d}{dt}(mv) \, dt \]

\[\int_{t_1}^{t_2} \sum F \, dt = \int_{t_1}^{t_2} \dot{G} \, dt \]
Linear impulse and momentum

- Particle of mass m is located by position vector \mathbf{r}
- **Velocity** \mathbf{v} is tangent to its path
- **Resultant** $\Sigma \mathbf{F}$ of all forces on m is in the direction of its acceleration \mathbf{a}
- Valid only when mass m is **constant**

$$\Sigma \mathbf{F} = m\dot{\mathbf{v}} = \frac{d}{dt}(m\mathbf{v})$$

$$\Sigma F_x = \dot{G}_x$$
$$\Sigma F_y = \dot{G}_y$$
$$\Sigma F_z = \dot{G}_z$$

$G = mv$
Linear Impulse-Momentum Principle

\[\sum F = \dot{G} \]

\[\int_{t_1}^{t_2} \sum F \, dt = \int_{t_1}^{t_2} \dot{G} \, dt \]

\[G_1 + \int_{t_1}^{t_2} \sum F \, dt = G_2 \]

Impulse-momentum diagram

\[m(v_1)_x + \int_{t_1}^{t_2} \sum F_x \, dt = m(v_2)_x \]

\[m(v_1)_y + \int_{t_1}^{t_2} \sum F_y \, dt = m(v_2)_y \]

\[m(v_1)_z + \int_{t_1}^{t_2} \sum F_z \, dt = m(v_2)_z \]

\[G_2 = m \mathbf{v}_2 \]

- **Integrate** to describe the effect of the **resultant force** \(\sum F \) on **linear momentum** over a finite period of **time**
Conservation of Linear Momentum

\[\Sigma F = \dot{G} \]

\[\int_1^2 \Sigma F \, dt = \int_1^2 \dot{G} \, dt \]

\[G_1 + \int_1^2 \Sigma F \, dt = G_2 \]

\[\Delta G = 0 \]

or

\[G_1 = G_2 \]

- If the \textbf{resultant force} \(\Sigma F \) is zero, then \textbf{linear momentum} remains \textbf{constant}, or is said to be \textbf{conserved}

- Linear momentum may be \textit{conserved} in \textit{one coordinate} (e.g., \(x \)), but \textbf{not necessarily} in \textit{others} (e.g., \(y \) or \(z \))
A jet fighter with a mass of 6450 kg requires 10 seconds from rest to reach its takeoff speed of 250 km/h under constant thrust $T = 48$ kN.

Determine the time average of the combined air and ground resistance R during takeoff.
A 100-lb boy runs with a velocity of 15 ft/s and jumps on his 20-lb sled. The sled and boy coast 80 ft on level snow before coming to rest.

Determine the coefficient of kinetic friction between the snow and sled.
Linear Impulse-Momentum: Yet Another Exercise

A 2.4-kg particle moves in the x-y plane and has the velocity shown at time $t = 0$. A force $F = 2 + 3t^2/4$ Newton's is applied in the y-direction at $t = 0$.

Determine the velocity of the particle 4 seconds after F is applied and specify the angle θ measured counter clockwise from the x-axis to the direction of the velocity.
Outline for Today

- Question of the day
- From $F=ma$ to impulse and momentum
- Linear impulse and momentum
- Linear impulse-momentum principle
- Conservation of linear momentum
- Answer your questions!
For Next Time...

- Continue Homework #9 due on **Thursday (11/1)**
- Read Chapter 5, Section 5.3